CS 5594: BLOCKCHAIN TECHNOLOGIES

THANG HOANG, PhD

CRYPTOGRAPHIC PRIMITIVES

Bitcoin is a cryptocurrency

Crypto is a mandatory building block in BTC/BC

Remark: Blockchain is based on distributed system and cryptography

Hash Functions and Applications

Asymmetric Cryptography
Public Key Primitives
Digital Signatures
Elliptic Curve Cryptography

Cryptographic Primitives

Hash Functions and Applications

Hash Function

Long message of arbitrary length

Also known as

- Message digest
- One-way transformation
- One-way function
- Hash

$$
\begin{gathered}
|H(m)| \ll|m| \\
|H(m)|=\{160,256,384,512\} \text { (preferred } 256 \text { bits) }
\end{gathered}
$$

Ideal Hash Function

Random Oracle

```
On input x \in {0,1}*
If x not in Book
    Flip coin d times to determine H(x)
    Record (x,H(x)) in Book
Else
    return y where (x,y) \in Book
EndIf
```


Impossible to build a Random Oracle in real-world

Idea: Approximate Random Oracle

Hash Function Design Principle

(Generally) Merkle-Damgard (MD) iteration

Start from a compression function H

$$
H:\{0,1\}^{b+n} \rightarrow\{0,1\}^{n}
$$

Iterate it

Create small, fixed size message digests from arbitrary message

Authentication
Digital signatures
Hash-based Message Authentication Codes

Pseudo Random Number Generators
Key Derivation Functions
Blockchains

Performance

Easy to compute $H(m)$

One-Way (OW) property (Pre-Image Resistance)

Given $H(m)$, it is computationally infeasible to find m

(Strong) Collision Resistance (CR)
Computationally infeasible to find m_{1}, m_{2} s.t. $H\left(m_{1}\right)=H\left(m_{2}\right)$
(Weak) Collision Resistance (Target Collision Resistance - TCR)
Given $H(m)$ and m, it is computationally infeasible to find some m^{\prime} s.t. $H\left(m^{\prime}\right)=H(m)$

CR implies TCR

TCR does not imply CR

OW does not imply CR

CR does not imply OW

Why do we need 160 or 256 bits in the output of a hash function?

If it is too long?
Unnecessary overhead
If it is too short?
Birthday paradox attack
Loss of strong collision property

A classroom of n students
Probability of at least two students having the same birthday (e.g., Feb 3)
$n=1$
$1-\frac{365}{365}$
$n=2$

$$
1-\frac{364}{365}
$$

$n=3$

$$
1-\left(\frac{364}{365} \times \frac{363}{365}\right)
$$

General n students:

$$
1-\left(\frac{364}{365} \times \frac{363}{365} \ldots \frac{365-n-1}{365}\right)=1-\frac{365!}{(365-n!) \cdot\left(365^{n}\right)}
$$

$$
\operatorname{Pr}(\text { no collision })=\left(1-\frac{1}{n}\right) \times\left(1-\frac{2}{n}\right) \times \cdots \times\left(1-\frac{k-1}{n}\right) \approx e^{-\frac{k^{2}}{2 n}}
$$

When x is small $1-x \approx e^{-x} \Rightarrow\left(1-\frac{1}{n}\right) \approx e^{-\frac{1}{n}}$

$$
\begin{aligned}
\operatorname{Pr}(\text { no collision }) & =e^{-1 / n} \times e^{-2 / n} \times \cdots \times e^{-\frac{k-1}{n}} \\
& =e^{-((1+2+\cdots+(k-1)) / n} \\
& =e^{-k(k-1) / 2 n}
\end{aligned}
$$

$$
\operatorname{Pr}(\text { no collision })=e^{-k(k-1) / 2 n}
$$

$\operatorname{Pr}($ at least one collision $)=1-e^{-k(k-1) / 2 n}$
$\Rightarrow k=\sqrt{2 n \times \ln \left(\frac{1}{1-p}\right)}$

In general, if there are k possibilities then (on average) \sqrt{k} are required to find a collision

Implication for hash function H of length m
With a probability of 0.5
If we hash $2^{m / 2}$ random inputs
Two message will have the same hash output Birthday attack

In Conclusion
Choose at least $m \geq 160$, preferably $m=256$

Applications should rely only on "specific security properties" of hash functions

Try to make these properties as "standard" and as weak as possible

Increase the odds of long-term security
When weaknesses are found in hash function, application more likely to survive

Example: MD5 is badly broken, but HMAC-MD5 is barely scratched

Deterministic hashing

Attacker chooses $M, d=H(M)$

Hashing with a random salt
Attacker chooses M, then good guy chooses public salt $s, d=H(s, M)$

Hashing random messages
Given $M, d=H\left(M^{\prime}\right)$, where $M^{\prime}=M \| r$

Hashing with a secret key \boldsymbol{k}
Attacker chooses $M, d=H(k, M)$

Deterministic hashing

Collision Resistance (CR)

Attacker cannot find M, M^{\prime} such that $H(M)=H\left(M^{\prime}\right)$

Also many other properties
Hard to find fixed-points, near-collisions, M s.t. $H(M)$ has low Hamming weight

Hashing with public salt

Target-Collision-Resistance (TCR)

Attacker chooses M, then given random salt s, cannot find M^{\prime} s.t. $H(s, M)=H\left(s, M^{\prime}\right)$

Enhanced TCR (eTCR)
Attacker chooses M, then given random salt s, cannot find M^{\prime} and s^{\prime} s.t. $H(s, M)=H\left(s^{\prime}, M^{\prime}\right)$

Hashing Random Message

Second Preimage Resistance

Given random M, attacker cannot find M^{\prime} such that $H(M)=H\left(M^{\prime}\right)$
One-wayness
Given $d=H(M)$ for random M , attacker cannot find some M^{\prime} such that $H\left(M^{\prime}\right)=d$
Extraction
For random s, high-entropy M, the digest $d=H(s, M)$ is close to being uniform

Hashing with a Secret Key

Pseudo-Random Functions

The mapping $M \rightarrow H(k, M)$ for secret key k looks random to an attacker

Universal hashing

$$
\forall M \neq M^{\prime}, \operatorname{Pr}_{k}\left[H(k, M)=H\left(k, M^{\prime}\right)\right]<\epsilon
$$

Block-based Encryption as Hash
Encryption block size may be too short (DES=64)
Birthday attack
Extension attacks

A few recently discovered methods can find collisions in a few hours
A few collisions were published in 2004
Many collisions found later for 1024-bit messages
More discoveries afterwards

In 2005, two X. 509 certificates with different public keys and the same MD5 hash were constructed

- Based on differential analysis
- 8 hours on a 1.6 GHz computer
- Much faster than birthday attack

Modern Hash Functions

MD5

- Previous versions (MD2, MD4) have serious weaknesses
- Broken; collisions published in August 2004
- Too weak to be used for critical applications

SHA-1

- Broken, both in theory and practice (with real-attacks)
- Collisions found in 2^{69} hash operations, much less than brute-force of 2^{80} operations (CRYPTO '05)
- http://thehackernews.com/2017/02/sha1-collision-attack.html

Recommended

- SHA-256, SHA-384, SHA-512, ...
- BLAKE-256/512 (good for embedded devices)

Authentication

Digital Signatures
Hash-based Message Authentication Code (HMAC)
Authenticated Data Structures
Hash Chain
Merkle Tree

Proof of Work

Digital Signatures

Hash-then-sign paradigm

First shorten arbitrary-long message, $d=H(m)$
Then sign the digest, $s=\operatorname{Sign}(d)$
Rely on collision resistance property
If $H(M)=H\left(M^{\prime}\right)$ then s is a signature for both M and M^{\prime}

Attacks on MD5, SHA-1 threaten current signatures

MD5 attacks can be used to get bad CA certificate [Stevens et al. 2009]

Collision Resistance is Hard

Attacker works off-line (find M, M^{\prime})
Use state-of-the-art cryptanalysis, as much as computation power as it can garter, without being detected !!

Helped by birthday attack (e.g., 2^80 vs. 2^160)

Well-worth the effort
One collision -> forgery for any signer

Use randomized hashing

To sign M, choose fresh random salt s Set $d=H(s, M)$, then $s=\operatorname{sign}(s, d)$

Attack scenario (collision game)

```)
``` Attacker chooses M, M Signer chooses random salt \(S\)
Attacker mut finds \(M^{\prime}\) s.t. \(H(s, M)=H\left(s, M^{\prime}\right)\)
Attack is inherently online
Only rely on target collision resistance (TCR)

Not every randomization works
\(H(M \| s)\) may be subject to collision attacks when \(H\) is Merkle-Damgård Yet this is what Probabilistic Signature Scheme (PSS) does (and it is provable in the ROM model)

Many constructions "in principle"
From any one-way function

Some engineering challenges
Most use long/variable-size randomness \(\rightarrow\) don't preserve Merkle-Damgård

Also, signing salt means changing the underlying signature schemes!

\section*{Hashed Message Authentication Code (HMAC)}

Simple key-prepend/append have problems when used with MD hash

Tag \(\leftarrow H(\) key || \(M\)) subject to length extension attacks

HMAC: tag \(\leftarrow H(\) key \(\| H(\) key \(\| M))\)
About as fast as key-prepend for a MD hash

Rely only on PRF quality of hash tag \(\leftarrow H(k e y \| M)\) looks random when key is secret

\section*{Used for many network security applications}

S/Key
Authenticate data streams
Key derivation in crypto schemes
Forward-security
Commitments

Commitment
\[
K_{i}=H\left(K_{i+1}\right), H \text { : hash function }
\]
\[
K_{0} \stackrel{F}{\leftarrow} K_{1} \stackrel{F}{\leftrightarrows} K_{2} \stackrel{F}{\leftrightarrows} K_{3} \stackrel{F}{\leftrightarrows} K_{4} \stackrel{F}{\leftarrow} \stackrel{F}{\leftrightarrows} K_{n}=R
\]

\section*{One-way Hash Chain: Properties}

\section*{Given \(K_{i}\) :}

Anybody can compute \(K_{j}\), where \(j<i\)
It is computationally infeasible to compute \(K_{l}\), where \(l>i\)
Any \(K_{l}\) disclosed later can be authenticated by checking if \(H^{l-i}\left(K_{i}\right)=\) \(K_{l}\)
Disclosing of \(K_{i+1}\) or a later value authenticates the owner of the hash chain
\[
K_{0} \stackrel{F}{\leftarrow} K_{1} \stackrel{F}{\leftrightarrows} K_{2} \stackrel{F}{\leftrightarrows} K_{3} \stackrel{F}{\leftrightarrows} K_{4} \stackrel{F}{\leftrightarrows} \stackrel{F}{\leftrightarrows} K_{n}=R
\]

Idea: generate a long list of passwords, use each only one time
Attacker gains little/no advantage by eavesdropping on password protocol, or cracking one password

\section*{Disadvantages}

Storage overhead
Remember a lot of passwords

Alternative: the S/Key protocol
Use one-way (hash) function

Alice selects a password \(x_{0}\)
Alice specifies \(n\), the number of passwords to generate
Alice's generates a sequence of passwords
- \(x_{1}=H(x)\)
- \(x_{2}=H\left(x_{1}\right)\)
-
- ...
- \(x_{n}=H\left(x_{n-1}\right)\)

Alice sends (securely) last value in the sequence: \(x_{n}\)
Key feature: no one knowing \(x_{i}\) can easily find \(x_{i-j}\) such that \(H\left(x_{i-j}\right)=x_{i}, j \in[i]\) Only Alice possesses that information

Limited number of passwords (by \(n\))
Need to periodically regenerate a new chain of passwords

Does not authenticate server!

Do not substitute bad seed password

Just a tool to enhance password-based systems

More general construction than one-way hash chains
Useful for authenticating a sequence of data values \(D_{0}, D_{1}, \ldots, D_{n}\)
\(H^{*}\) authenticates the entire chain

A binary tree over data values
For authentication purpose
Verifier stores the root as the commitment of the Merkle tree

\section*{Example}

To authenticate \(k_{2}\), send \(\left(k_{2}, m_{3}, m_{01}, m_{47}\right)\)
Check \(m_{07}=\) ? \(h\left(h\left(m_{01}\left\|h\left(f\left(k_{2}\right) \| m_{3}\right)\right\| m_{47}\right)\right.\)
\[
m_{07}=h\left(m_{03}, m_{47}\right)
\]

Hashing at the leaf level is mandatory to prevent unnecessary disclosure of data values

Authentication of the root is necessary to use the tree

Typically done through a digital signature or pre-distribution

\section*{Limitation}

All leaf values must be known ahead of time

\section*{Update an element?}

Insert a new element?
\[
m_{07}=h\left(m_{03}, m_{47}\right)
\]

Delete an element?

\section*{Hash chain of blocks}

Hash tree (Merkle tree) of transactions in each block

Cryptographic Primitives

\section*{Asymmetric Cryptography}

Cryptographic operations use different keys

Known as asymmetric key cryptography, public key cryptography Key negotiation, digital signatures

Rely on some known mathematical hard problems
Discrete logarithmic
Elliptic curve discrete logarithmic
Large integer factorization

P vs. NP
A problem is in P if it can be solved in polynomial time A problem is in NP if the validity of a proposed solution can be checked in polynomial time

\section*{Confidentiality}

\section*{Authentication}

Integrity
Non-repudiation

\section*{Public key cryptosystem harnesses certain algebraic properties in finite field}

\begin{tabular}{ll}
Closure under addition & \(a+b=c \in G\) \\
Associativity of addition & \(a+(b+c)=(a+b)+c\) \\
Additive identity & \(\exists e\) s.t. \(a+e=e+a=a\) \\
Additive inverse & \(\exists b\) s.t. \(a+b=e\) \\
& \\
Commutativity of addition & \(a+b=b+a\) \\
& \\
Closure under multiplication & \(a \times b=c \in G\) \\
Associativity of multiplication & \begin{tabular}{l}
\(a \times(b \times c)=(a \times b) \times c\) \\
Distributive laws \\
Commutativity of multiplication
\end{tabular} \\
\begin{tabular}{l}
\(a \times b+c)=a \times b+a \times c\) \\
Multiplicative identity \\
No zero divisors \\
Multiplicative inverse
\end{tabular} & \(\exists e\) s.t. \(a \times e=e \times a\) \\
& \(a \times b=0 \Rightarrow a=0 \vee b=0\) \\
& \(\exists b\) s.t. \(a \times b=e\)
\end{tabular}

Most popular public key method
Provide both public key encryption and digital signatures
Operates on multiplicative group \((\mathbb{Z} / n \mathbb{Z})^{*}\)

Based on factorization problem
Given \(n=p \cdot q\), hard to factorize \(n\) in polynomial time

Variable key length (2048 bits or greater)
Variable plaintext block size
Plaintext block size must be smaller than key size
Ciphertext block size is same as key size

Find (using Miller-Rabin) large primes \(p\) and \(q\)
Let \(n=p \cdot q\)
Do not disclose \(p\) and \(q\)
\[
\Phi(n)=? ? ?
\]

Choose an \(e\) that is relatively prime to \(\Phi(n)\)
\[
\operatorname{gcd}(e, \Phi(n))=1
\]

Public key \(=(e, n)\)
Find \(d\) as multiplicative inverse of \(e \bmod \Phi(n)\)
\[
e \cdot d=1 \bmod \Phi(n)
\]

Private key \(=(d, n)\)

Let RSA public key \(=(e, n)\) and RSA private key \(=(d, n)\)
Given a plaintext message \(m<n\)
Encryption
Encryption: \(c \leftarrow m^{e} \bmod n\)
Decryption: \(m \leftarrow c^{d} \bmod n\)

\section*{Signature}

Signing: \(s \leftarrow m^{d} \bmod n\)
Verification: \(m \leftarrow s^{e} \bmod n\)
What if \(\mathrm{m}>\mathrm{n}\) ?
Remark: hash-then-sign paradigm
Hashing: \(t \leftarrow \operatorname{Hash}(m)\)
\[
\#|t|=160 \text { bits } \Rightarrow t<n
\]

Signing: \(s \leftarrow t^{d} \bmod n\)

\section*{RSA Example}
- Choose \(p=23, q=11\)
- Both primes
- \(n=p \cdot q=253\)
- \(\Phi(n)=(p-1) \cdot(q-1)=\) 220
- Choose \(e=39\)
- Relatively prime to 220
- Public key \(=(39,253)\)
- Find \(d=e^{-1} \bmod 220=79\)
- \(39 \cdot 79 \equiv 1 \bmod 220\)
- Private key = <79, 253>

Suppose plaintext \(m=\mathbf{8 0}\)
- Encryption
\[
c=80^{39} \bmod 253=\ldots\left(m^{e} \bmod n\right)
\]
- Decryption
\[
m=ـ^{79} \bmod 253=\mathbf{8 0}\left(c^{d} \bmod n\right)
\]
- Signing
\[
c=80^{39} \bmod 253=\ldots\left(m^{e} \bmod n\right)
\]
- Verification
\[
m=\ldots \quad 79 \bmod 253=\mathbf{8 0}\left(c^{d} \bmod n\right)
\]

\section*{RSA Example}
- Choose \(p=23, q=11\)
- Both primes
- \(n=p \cdot q=253\)
- \(\Phi(n)=(p-1) \cdot(q-1)=\) 220
- Choose \(e=39\)
- Relatively prime to 220
- Public key \(=(39,253)\)
- Find \(d=e^{-1} \bmod 220=79\)
- \(39 \cdot 79 \equiv 1 \bmod 220\)
- Private key = <79, 253>

Suppose plaintext \(m=\mathbf{8 0}\)
- Encryption
\[
c=80^{39} \bmod 253=37\left(m^{e} \bmod n\right)
\]
- Decryption
\[
m=37^{79} \bmod 253=\mathbf{8 0}\left(c^{d} \bmod n\right)
\]
- Signing
\[
s=80^{79} \bmod 253=\mathbf{2 2 4}\left(m^{d} \bmod n\right)
\]
- Verification
\[
m=224^{39} \bmod 253=\mathbf{8 0}\left(s^{e} \bmod n\right)
\]

At present, 1024-bit keys are considered secure, but 2048-bit keys are recommended

Tips for making \(n\) hard to be factorized
\(p\) and \(q\) lengths should be similar (e.g., \(\sim 500\) bits each if key is 1024 bits)
both \((p-1)\) and \((q-1)\) should contain a "large" prime factor \(\operatorname{gcd}(p-1, q-1)\) should be "small"
\(d\) should be larger than \(n^{0.25}\)

Some attacks on RSA
Mathematical attacks (factor \(n\), compute \(d\) from e) -> extremely difficult Brute force

Probable-message attacks
Timing attacks

How to prevent attacks?
Large key
Random padding (OKCS \#1 v1)
Message blinding

Useful only for digital signing (no encryption or key exchange)

Components
SHA-1 to generate a hash value (some other hash functions also allowed now)
Digital Signature Algorithm (DSA) to generate the digital signature from this hash value

Designed to be fast for the signer rather than verifier

Based on discrete log hard problem
Given \(y_{M}\), hard to find \(x_{M}\) s.t. \(y_{M}=g^{x_{M}} \bmod p\)

Announce public parameters used for signing
Pick \(p\) as a prime with \(>=1024\) bits \(\quad p=103\)
Pick \(q\) as a 160 -bit prime such that \(q \mid(p-1)\)
\[
q=17 \text { (divides } 102)
\]

Choose \(g \equiv h^{(p-1) / q} \bmod p\),
\[
\text { If } h=2, g=2^{6} \bmod 103=64
\]
where \(1<h<(p-1)\) such that \(g>1\)
```

powers of 64 mod 103=
64799619381341381001472762330661

```

Note: \(g\) is of order \(q \bmod p\)

\section*{Key Generation}
- Alice generates a long-term private key \(x_{M}\)
- Random integer \(0<x_{M}<q\)
\[
x_{M}=13
\]
- Alice generates a long-term public key \(y_{M}\)
- \(y_{M}=g^{x_{M}} \bmod p\)
\[
y_{M}=64^{13} \bmod 103=76
\]
- Alice randomly picks a private key \(k\) such that \(0<k<q\), and generates \(k^{-1} \bmod q\)

\section*{Signing phase}
\[
k=12 ; k^{-1}=12^{-1} \bmod 17=10
\]
- \(\quad\) Signing message \(M\)
\[
H(M)=75
\]
- Public key \(r=\left(g^{k} \bmod p\right) \bmod q\)
\[
r=(6412 \bmod 103) \bmod 17=4
\]
- Signature \(s=\left(k^{-1}\left(H(M)+x_{m} \cdot r\right)\right) \bmod q \quad s=(10 \cdot(75+13 \cdot 4)) \bmod 17=12\)
- Send
\[
(M, r, s)
\]
\[
(M, 4,12)
\]

\section*{Verification}
- Public parameters: \(g, p, q, y_{M} p=103, q=17, g=64, y_{M}=76\)
- Received from signer: \(M, r, s \quad M, 4,12 \quad H(M)=75\)
- \(w=(s)^{-1} \bmod q\)
\[
w=12^{-1} \bmod 17=10
\]
- \(u_{1}=[H(M) w] \bmod q\)
\[
u_{1}=75 \cdot 10 \bmod 17=2
\]
- \(u_{2}=(r * w) \bmod q\)
\[
u_{2}=4 \cdot 10 \bmod 17=6
\]
- \(v=\left[\left(g^{u_{1}} \cdot y_{M}^{u_{2}}\right) \bmod p\right] \bmod q\)
\[
v=\left(\left(64^{2} \cdot 76^{6}\right) \bmod 103\right) \bmod 17=4
\]
1. If \(v=r\), then the signature is verified

Given \(y_{M}\), it is difficult to compute \(x_{M}\)
\[
x_{M} \text { is the discrete log of } y_{M} \text { to the base } g, \bmod p \text { (i.e., } y_{M}=g^{x_{M}} \bmod p \text {) }
\]

Similarly, given \(r\), it is difficult to compute \(k\)

Cannot forge a signature without \(x_{M}\)

Signatures are not repeated (used once per message) and cannot be replayed

Slower to verify than RSA, but faster signing than RSA
Key lengths of 2048 bits and greater are also allowed

Cryptographic Primitives

\section*{Elliptic Curve Cryptography}

An elliptic curve (EC) consists of all elements \((x, y) \in \mathbb{F}\) satisfying
\[
y^{2}=x^{3}+a x+b
\]
\[
y^{2}=x^{3}-x+3
\]
\[
y^{2}=x^{3}+1
\]
\[
y^{2}=x^{3}-1
\]
\[
y^{2}=x^{3}-4 x
\]

Shorter key size than conventional PKCs (DL-based, RSA)
Lower computation overhead
Due to shorter key

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c}
Sec level \\
(bits)
\end{tabular} & \begin{tabular}{c}
RSA/DL-based \\
key size (bits)
\end{tabular} & \begin{tabular}{c}
ECC key \\
size (bits)
\end{tabular} \\
\hline 56 & 512 & 112 \\
\hline 80 & 1024 & 160 \\
\hline 112 & 2048 & 224 \\
\hline 128 & 3072 & 256 \\
\hline 192 & 7680 & 384 \\
\hline 256 & 15360 & 512 \\
\hline
\end{tabular}
- Point addition: Let P and Q be two EC points
\[
P+Q=R=(x,-y)
\]
\[
(x, y)=-R:=\text { intersection of } \mathrm{EC} \text { and } \mathrm{PQ} \text {-line }
\]
- Point negation: \(P+(-P)=0\)
- O: identity point at infinity (not on the curve)
- Point doubling: \(R=P+P=\left(x^{\prime},-y^{\prime}\right)\),
\[
\left(x^{\prime}, y^{\prime}\right)=-R:=\text { intersection of EC and tangent line of } \mathrm{P}
\]
- Point multiplication: achieved via double-and-add
- Similar to multiply-and-square trick
- e.g., \(Q=7 P, 7=(111)_{2}, Q=0, R=P\)
- \(Q+=R \& R^{*}=2 ; Q_{+=R} \& R^{*}=2 ; Q_{+=R} \& R^{*}=2\)

\section*{Point addition and point doubling (arithmetic)}
\[
\begin{gathered}
x_{3}=s^{2}-x_{1}-x_{2} \\
y_{3}=s\left(x_{1}-x_{2}\right)-y_{1}
\end{gathered}
\]
where
\[
s=\left\{\begin{array}{l}
\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \text { if } P \neq Q \text { (point addition) } \\
\frac{3 x_{1}^{2}+a}{2 y_{1}} \text { if } P=Q \text { (point doubling) }
\end{array}\right.
\]
- Example: Let \(\mathrm{EC}=y^{2}=x^{3}+2 x+2 \bmod 17, \mathrm{P}=(5,1), \mathrm{Q}=(7,6)\)
- Compute \(\mathrm{U}=2 P, V=P+Q\)

- \(x_{u}=s_{u}^{2}-x_{p}-x_{q}=\ldots \bmod 17 ; y_{u}=s_{u}\left(x_{p}-x_{q}\right)-y_{p}=\ldots \bmod 17\)
- \(x_{v}=s_{v}^{2}-x_{p}-x_{q}=\ldots \bmod 17 ; y_{v}=s_{v}\left(x_{p}-x_{q}\right)-y_{p}=\ldots \bmod 17\)

Points on an elliptic curve and the infinity point \(\mathbf{O}\) form cyclic subgroups
e.g., \(y^{2}=x^{3}+2 x+2 \bmod 17, \mathrm{P}=(5,1)\) \(2 \mathrm{P}=(6,3) ; 3 \mathrm{P}=2 \mathrm{P}+\mathrm{P}=(10,6) ; \ldots \ldots . ., 18 \mathrm{P}=(5,16) ; 19 \mathrm{P}=\) 0

EC has order \(|\mathrm{E}|=19\) as there are 19 points in its cyclic group

\section*{How many points in an arbitrary EC?}

Given an elliptic curve E modulo \(p\), the number of points on E is bounded by
\[
p+1-2 \sqrt{p} \leq|E| \leq p+1+2 \sqrt{p} \text { (Hasse Theorem) }
\]

Number of points close to prime \(p\)

Rely on EC-discrete logarithmic hard problem
Given \((G, Y) \in\) EC s.t. \(Y=k \cdot G\) (\(Y\) is \(G\) added to itself \(k\) times), hard to find \(k\)

EC Key size smaller than RSA/DH-based crypto
Attacks on EC groups are weaker than factorizing algorithm or discrete log attacks

Best known attacks
Baby-step, giant step
Pollard-Rho
Number of trials: \(O(\sqrt{p})\)

\section*{ECDSA Public Parameters}

\section*{Public parameter generation}

Pick \(p\) as a prime with \(>=160\) bits
\[
p=17
\]

Pick \(a, b\) to form an EC
\[
\begin{aligned}
& y^{2}=x^{3}+2 x^{2}+2 x \\
& (\mathrm{a}=2, \mathrm{~b}=2)
\end{aligned}
\]

Pick an ECC generator \(G\) with order \(q\)
\[
q \times G=0
\]
\[
\mathrm{G}=(5,1), \mathrm{q}=19
\]

How to choose G and q?
```

multiplication of G mod p=
(5,1)(6,3)(10,6)(3,1) (9,16) (16,13) (0,6) (13,7) (7,6) (7,11) (13,10) (0,11) (16,4) (9,1) (3,16) (10,11) (6,14) (5,16) (0)

```
(\(p, a, b, G, q\)) are public parameters

\section*{Key Generation}

Alice generates a long-term private key \(d_{A}\)
Random integer \(0<d_{A}<q\)
\[
d_{M}=5
\]

Alice generates a long-term public key \(Q_{A}\)
\[
Q_{A}=d_{M} \times G \bmod p
\]
\[
Q_{A}=(9,16)
\]

Signing phase: To sign message \(M\)
\[
z=H(M)=5
\]

Select an ephemeral key \(k\) from [1, \(q-1\)]
\[
k=3
\]

Compute an EC point \(\left(x_{1}, y_{1}\right)=k \times G\)
\[
\left(x_{1}, y_{1}\right)=(10,6)
\]

Compute \(r=x_{1} \bmod q\) (choose other \(k\) if \(r=0\))
\[
r=10
\]

Compute \(s=k^{-1}\left(z+r \cdot d_{A}\right) \bmod q\) (choose other \(k\) if \(\left.s=0\right)\)
Signature \(\sigma=(r, s)\)
\[
s=13 \cdot(5+10 \cdot 5) \bmod 19=12
\]

Send \((M, \sigma)\)

\section*{Verification}

Public parameters: \(a, b, G, q Q_{A} \quad a=2, b=2, p=17, q=19, G=(5,1), Q_{A}=(9,16)\)
Received from signer: \(M, r, s\)
\(M, 10,12\)
\(z=H(M)=5\)
\(u_{1}=z \cdot s^{-1} \bmod q\)
\[
u_{1}=5 \cdot 12^{-1} \bmod 19=2
\]
\(u_{2}=r \cdot s^{-1} \bmod q\)
\[
u_{1}=10 \cdot 12^{-1} \bmod 19=4
\]

Compute EC point \(\left(x_{1}, y_{1}\right)=u_{1} \times G+u_{2} \times Q_{A} \quad\left(x_{1}, y_{1}\right)=(6,3)+(5,1)=(10,6)\)
If \(\left(x_{1}, y_{1}\right)=0\), invalid signature
\[
x_{1}=10, r=10
\]

If \(r \equiv x_{1} \bmod n\), valid signature. Invalid otherwise

Curve 25519 (Montgomery curve)
\[
\begin{gathered}
y^{2}=x^{3}+486662 x^{2}+x \\
p=2^{255}-19
\end{gathered}
\]

Secp256k1 (used in bitcoin)
\[
\begin{aligned}
& y^{2}=x^{3}+7 \\
& p=2^{256}-2^{32}-2^{9}-2^{8}-2^{7}-2^{6}-2^{4}-1
\end{aligned}
\]

ECC replaces modular arithmetic operations in conventional PKC by operations defined over the elliptic curve

ECC primitives can be easily constructed by making analogous changes to the corresponding conventional PKC

ECC Encryption from ElGamal Encryption
ECC-DH Key Exchange from Diffie-Hellman Key Exchange
ECC-DSA Signature from DSA Signature```

