

# CS 5594: BLOCKCHAIN TECHNOLOGIES

Spring 2024

THANG HOANG, PhD

**CRYPTOGRAPHIC PRIMITIVES** 

## Why Cryptography?

#### Bitcoin is a <u>crypto</u>currency

Crypto is a mandatory building block in BTC/BC

Remark: Blockchain is based on distributed system and cryptography

#### Outline

Hash Functions and Applications

Asymmetric Cryptography

**Public Key Primitives** 

**Digital Signatures** 

Elliptic Curve Cryptography

Cryptographic Primitives

## **Hash Functions and Applications**

#### Hash Function



Also known as

- Message digest
- One-way transformation
- One-way function
- Hash

## $|H(m)| \ll |m|$ $|H(m)| = \{160, 256, 384, 512\}$ (preferred 256 bits)

#### **Ideal Hash Function**

#### Random Oracle

```
On input x ∈ {0,1}*
If x not in Book
    Flip coin d times to determine H(x)
    Record (x,H(x)) in Book
Else
    return y where (x,y) ∈ Book
```

EndIf

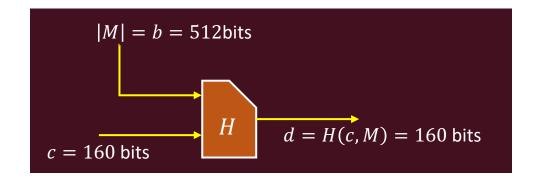
Impossible to build a Random Oracle in real-world

Idea: Approximate Random Oracle

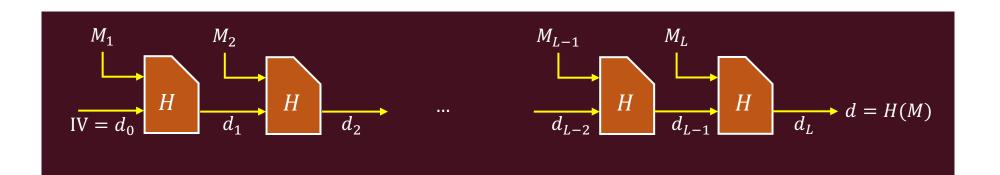
#### Hash Function Design Principle

(Generally) Merkle-Damgard (MD) iteration

## Start from a compression function H $H: \{0,1\}^{b+n} \rightarrow \{0,1\}^n$



#### Iterate it



Create small, fixed size message digests from arbitrary message

Authentication

Digital signatures

Hash-based Message Authentication Codes

Pseudo Random Number Generators

Key Derivation Functions

Blockchains

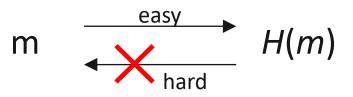
#### **Desirable Properties of Hash Functions**

#### Performance

Easy to compute H(m)

#### **One-Way (OW) property (Pre-Image Resistance)**

Given H(m), it is computationally infeasible to find m



(Strong) Collision Resistance (CR)

Computationally infeasible to find  $m_1, m_2$  s.t.  $H(m_1) = H(m_2)$ 

#### (Weak) Collision Resistance (Target Collision Resistance – TCR)

Given H(m) and m, it is computationally infeasible to find some m' s.t. H(m') = H(m)



#### CR implies TCR

TCR does <u>not</u> imply CR

#### OW vs. CR

OW does <u>not</u> imply CR

CR does <u>not</u> imply OW

### Length of Hash Output

Why do we need 160 or 256 bits in the output of a hash function?

If it is too long?

Unnecessary overhead

If it is too short?

Birthday paradox attack

Loss of strong collision property

A classroom of *n* students

Probability of at least two students having the same birthday (e.g., Feb 3)

$$n=1 1 - \frac{365}{365}$$

$$n=2 1 - \frac{364}{365}$$

$$n=3 1 - \left(\frac{364}{365} \times \frac{363}{365}\right)$$

General *n* students:

$$1 - \left(\frac{364}{365} \times \frac{363}{365} \dots \frac{365 - n - 1}{365}\right) = 1 - \frac{365!}{(365 - n!) \cdot (365^n)}$$

Pr(no collision) = 
$$\left(1 - \frac{1}{n}\right) \times \left(1 - \frac{2}{n}\right) \times \dots \times \left(1 - \frac{k-1}{n}\right) \approx e^{-\frac{k^2}{2n}}$$

When x is small 
$$1 - x \approx e^{-x} \Rightarrow \left(1 - \frac{1}{n}\right) \approx e^{-\frac{1}{n}}$$
  
Pr(no collision)  $= e^{-1/n} \times e^{-2/n} \times \cdots \times e^{-\frac{k-1}{n}}$   
 $= e^{-((1+2+\dots+(k-1))/n)}$   
 $= e^{-k(k-1)/2n}$ 

 $Pr(no collision) = e^{-k(k-1)/2n}$ 

 $Pr(at least one collision) = 1 - e^{-k(k-1)/2n}$ 

$$\Rightarrow k = \sqrt{2n \times \ln(\frac{1}{1-p})}$$

In general, if there are k possibilities then (on average)  $\sqrt{k}$  are required to find a collision

Implication for hash function  ${\cal H}$  of length m

With a probability of 0.5

If we hash  $2^{m/2}$  random inputs

Two message will have the same hash output Birthday attack

In Conclusion

Choose at least  $m \ge 160$ , preferably m = 256

#### **Imperfect Hash Functions**

Applications should rely only on "specific security properties" of hash functions

Try to make these properties as "standard" and as weak as possible

Increase the odds of long-term security

When weaknesses are found in hash function, application more likely to survive

Example: MD5 is badly broken, but HMAC-MD5 is barely scratched

#### Security Requirements

### **Deterministic hashing**

Attacker chooses M, d = H(M)

## Hashing with a random salt

Attacker chooses M, then good guy chooses public salt s, d = H(s, M)

### Hashing random messages

Given M, d = H(M'), where M' = M || r

## Hashing with a secret key k

Attacker chooses M, d = H(k, M)



#### **Deterministic hashing**

**Collision Resistance (CR)** 

Attacker cannot find M, M' such that H(M) = H(M')

Also many other properties

Hard to find fixed-points, near-collisions, M s.t. H(M) has low Hamming weight

### Hashing with public salt

### Target-Collision-Resistance (TCR)

Attacker chooses M, then given random salt s, cannot find M' s.t. H(s, M) = H(s, M')

Enhanced TCR (eTCR)

Attacker chooses M, then given random salt s, cannot find M' and s' s.t. H(s, M) = H(s', M')

#### **Hashing Random Message**

#### Second Preimage Resistance

Given random M, attacker cannot find M' such that H(M) = H(M')

**One-wayness** 

Given d = H(M) for random M, attacker cannot find some M' such that H(M') = d

Extraction

For random s, high-entropy M, the digest d = H(s, M) is close to being uniform

#### Hashing with a Secret Key

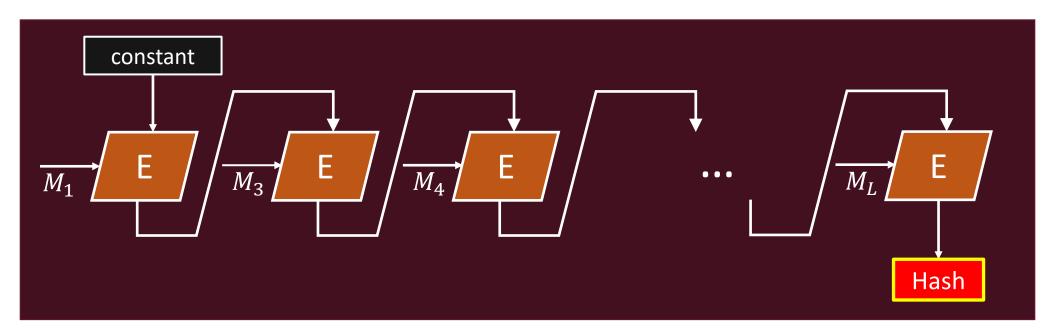
**Pseudo-Random Functions** 

The mapping  $M \rightarrow H(k, M)$  for secret key k looks random to an attacker

Universal hashing

 $\forall M \neq M', \Pr_k[H(k, M) = H(k, M')] < \epsilon$ 

#### Is Encryption a Good Hash Function?



#### Block-based Encryption as Hash

Encryption block size may be too short (DES=64)

- Birthday attack
- **Extension** attacks

## (In)Security of MD5

- A few recently discovered methods can find collisions in a few hours
- A few collisions were published in 2004
- Many collisions found later for 1024-bit messages
- More discoveries afterwards

In 2005, two X.509 certificates with different public keys and the same MD5 hash were constructed

- Based on differential analysis
- 8 hours on a 1.6GHz computer
- Much faster than birthday attack

#### Modern Hash Functions

#### MD5

- Previous versions (MD2, MD4) have serious weaknesses
- Broken; collisions published in August 2004
- Too weak to be used for critical applications

#### SHA-1

- Broken, both in theory and practice (with real-attacks)
- Collisions found in 2<sup>69</sup> hash operations, much less than brute-force of 2<sup>80</sup> operations (CRYPTO '05)
- http://thehackernews.com/2017/02/sha1-collision-attack.html

Recommended

- SHA-256, SHA-384, SHA-512, ...
- BLAKE-256/512 (good for embedded devices)

Authentication

Digital Signatures Hash-based Message Authentication Code (HMAC) Authenticated Data Structures Hash Chain Merkle Tree

Proof of Work

### **Digital Signatures**

Hash-then-sign paradigm

First shorten arbitrary-long message, d = H(m)

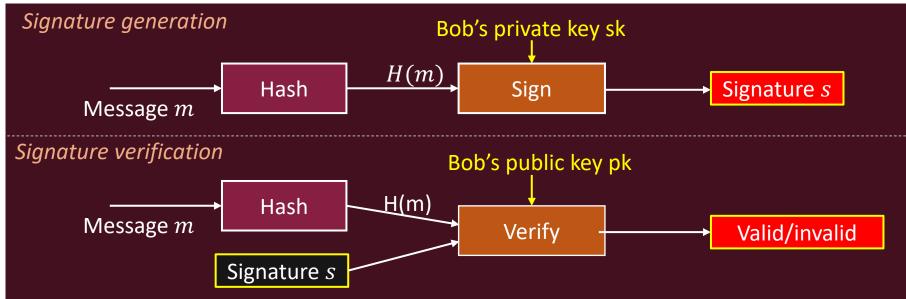
Then sign the digest, s = Sign(d)

Rely on **collision resistance** property

If H(M) = H(M') then s is a signature for both M and M'

#### Attacks on MD5, SHA-1 threaten current signatures

MD5 attacks can be used to get bad CA certificate [Stevens et al. 2009]



Attacker works off-line (find M,M')

Use state-of-the-art cryptanalysis, as much as computation power as it can garter, without being detected !!

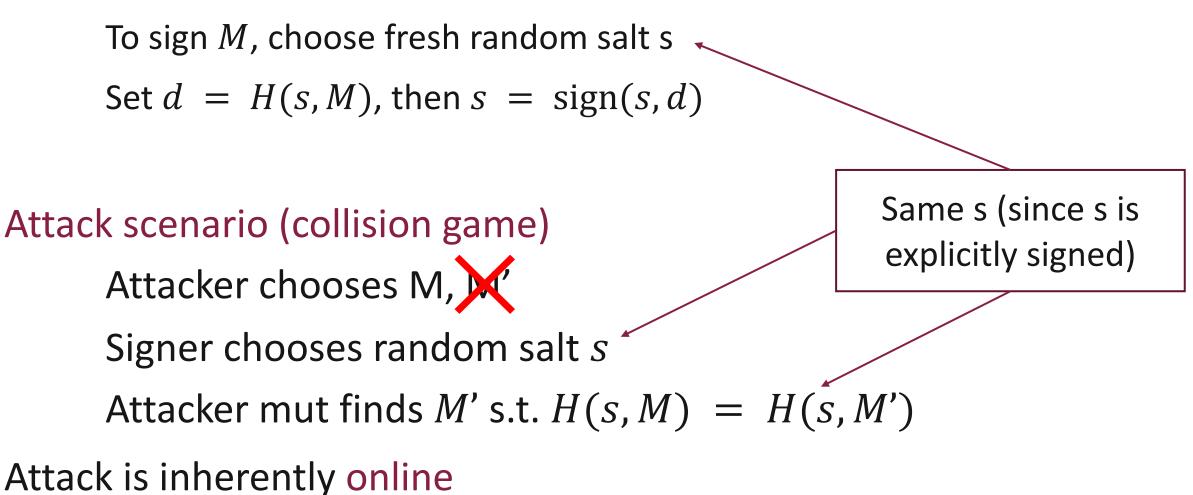
Helped by birthday attack (e.g., 2^80 vs. 2^160)

Well-worth the effort

One collision -> forgery for any signer

#### Signatures without CRHF

## Use randomized hashing



Only rely on target collision resistance (TCR)

### TCR hashing for signatures

Not every randomization works

H(M||s) may be subject to collision attacks when H is Merkle-Damgård Yet this is what Probabilistic Signature Scheme (PSS) does (and it is provable in the ROM model)

Many constructions "in principle"

From any one-way function

Some engineering challenges

Most use long/variable-size randomness  $\rightarrow$  don't preserve Merkle-Damgård

Also, signing salt means changing the underlying signature schemes!

## Hashed Message Authentication Code (HMAC)

Simple key-prepend/append have problems when used with MD hash

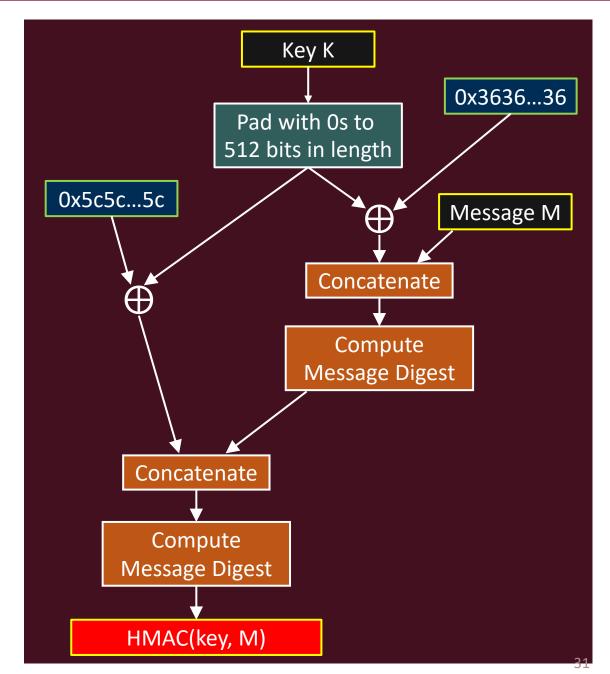
Tag  $\leftarrow H(key || M)$  subject to **length** extension attacks

**HMAC**: tag  $\leftarrow$  H(key || H(key || M))

About as fast as key-prepend for a MD hash

Rely only on PRF quality of hash

tag  $\leftarrow H(key||M)$  looks random when key is secret



### Hash Chain

Used for many network security applications

S/Key

Authenticate data streams

Key derivation in crypto schemes

Forward-security

Commitments

Commitment  

$$K_i = H(K_{i+1}), H$$
: hash function  
 $K_0 \leftarrow F, K_1 \leftarrow F, K_2 \leftarrow F, K_3 \leftarrow F, K_4 \leftarrow F, K_n = R$ 

#### **One-way Hash Chain: Properties**

Given *K<sub>i</sub>*:

- Anybody can compute  $K_j$ , where j < i
- It is computationally infeasible to compute  $K_l$ , where l > i
- Any  $K_l$  disclosed later can be authenticated by checking if  $H^{l-i}(K_i) = K_l$
- Disclosing of  $K_{i+1}$  or a later value authenticates the owner of the hash chain

$$K_0 \xleftarrow{F} K_1 \xleftarrow{F} K_2 \xleftarrow{F} K_3 \xleftarrow{F} K_4 \xleftarrow{F} \xleftarrow{F} K_n = R$$

### Using "Disposable" Passwords

Idea: generate a long list of passwords, use each only one time

Attacker gains little/no advantage by eavesdropping on password protocol, or cracking one password

#### Disadvantages

Storage overhead Remember a lot of passwords

<u>Alternative</u>: the S/Key protocol

Use one-way (hash) function

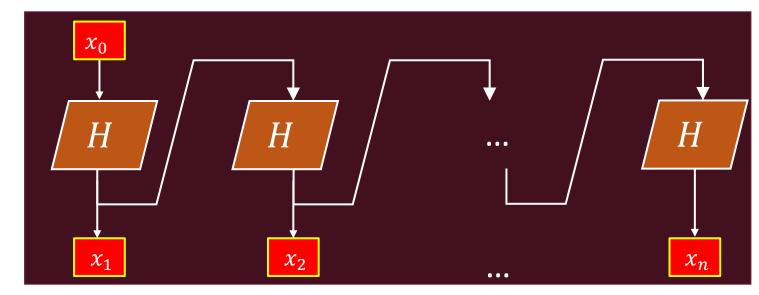
### S/Key Password Generation

Alice selects a password  $x_0$ 

Alice specifies n, the number of passwords to generate

Alice's generates a sequence of passwords

- $x_1 = H(x)$
- $x_2 = H(x_1)$
- ...
- .
- $x_n = H(x_{n-1})$



Alice sends (securely) last value in the sequence:  $x_n$ 

Key feature: no one knowing  $x_i$  can easily find  $x_{i-j}$  such that  $H(x_{i-j}) = x_i, j \in [i]$ Only Alice possesses that information

#### S/Key Password: Limitation

Limited number of passwords (by *n*)

Need to periodically regenerate a new chain of passwords

Does not authenticate server!

Do not substitute bad seed password

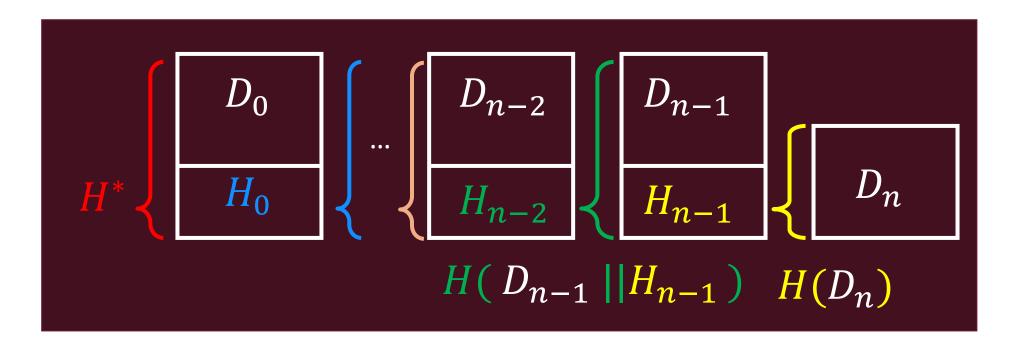
Just a tool to enhance password-based systems

### **Chained Hash**

More general construction than one-way hash chains

Useful for authenticating a sequence of data values  $D_0$ ,  $D_1$ , ...,  $D_n$ 

 $H^*$  authenticates the entire chain

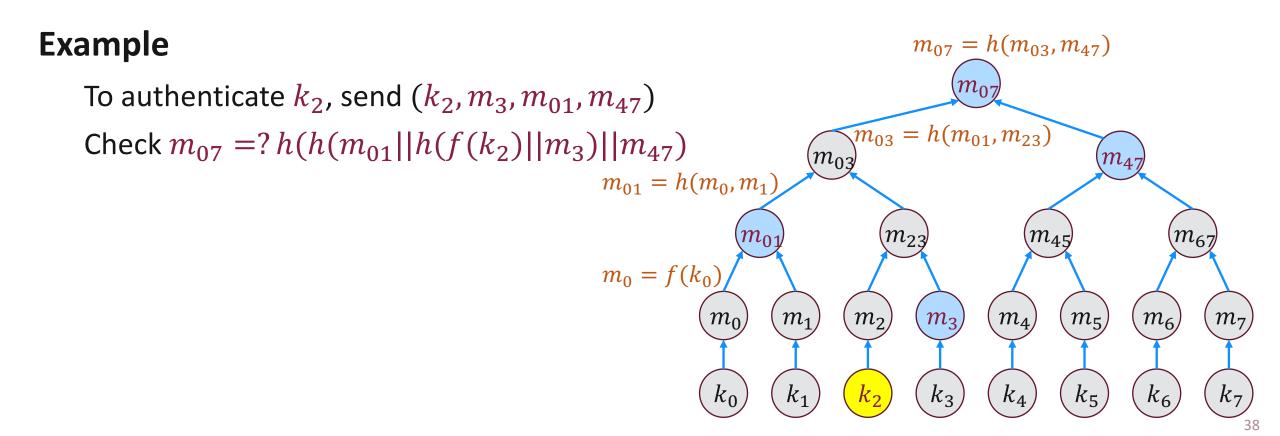


### Merkle Hash Tree

A binary tree over data values

For authentication purpose

Verifier stores the root as the commitment of the Merkle tree

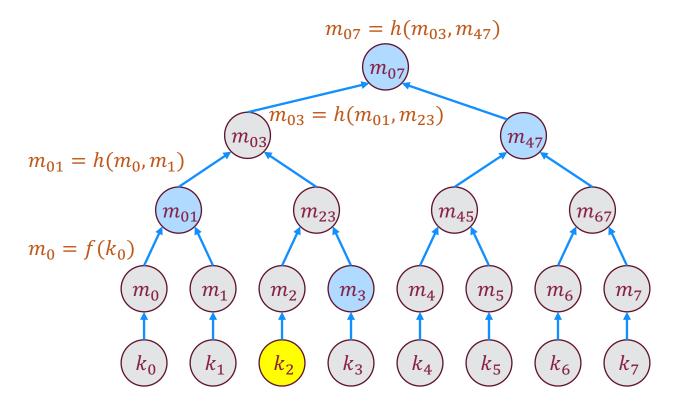


### Merkle Hash Tree

Hashing at the leaf level is mandatory to prevent unnecessary disclosure of data values

Authentication of the root is necessary to use the tree

Typically done through a digital signature or pre-distribution

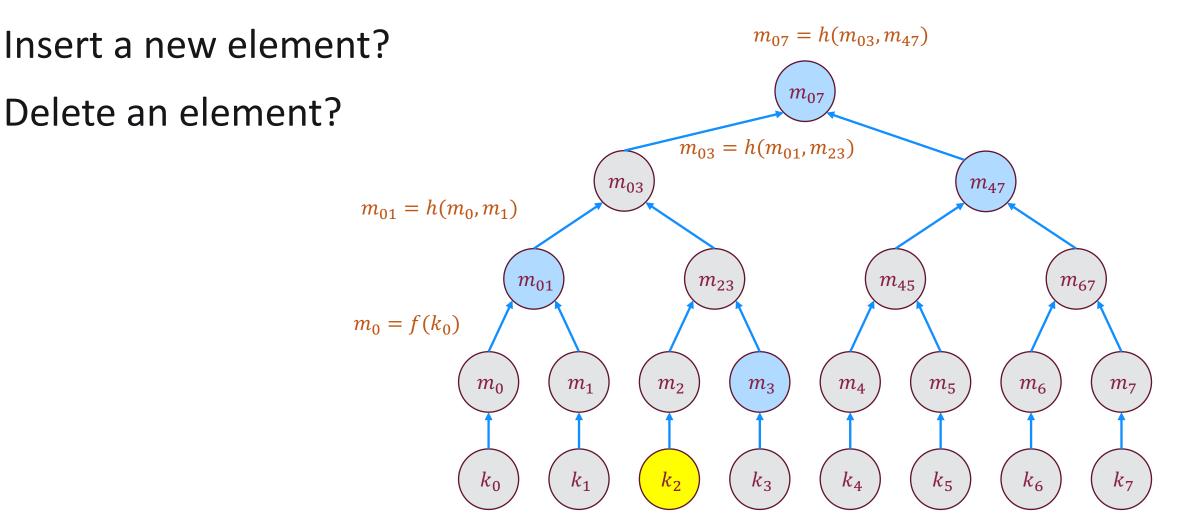


#### Limitation

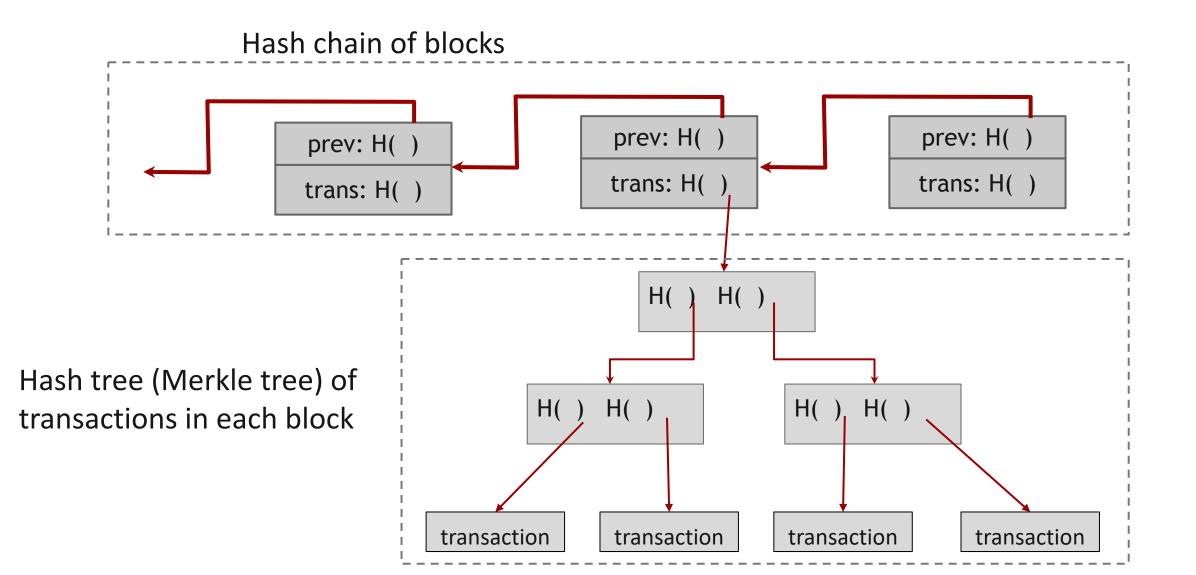
All leaf values must be known ahead of time

## Merkle Hash Tree

Update an element?



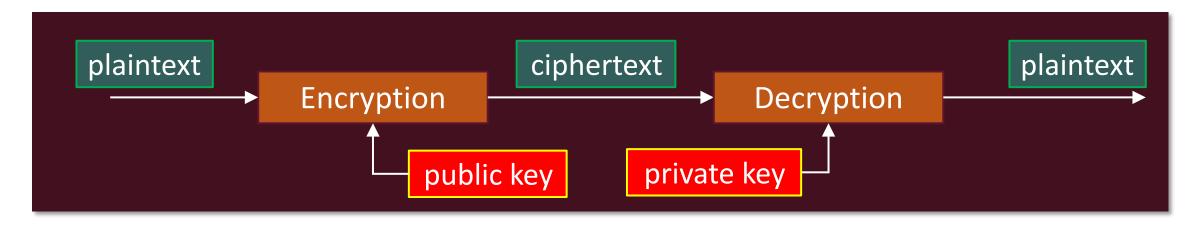
### Merkle Hash Tree in Blockchain



**Cryptographic Primitives** 

## Asymmetric Cryptography

## Public Key (Asymmetric) Cryptography



Cryptographic operations use different keys

Known as *asymmetric key* cryptography, *public key* cryptography Key negotiation, digital signatures

## Public Key Cryptography: Properties

Rely on some known mathematical hard problems

Discrete logarithmic

Elliptic curve discrete logarithmic

Large integer factorization

P vs. NP

A problem is in P if it can be solved in polynomial time A problem is in NP if the validity of a proposed solution can be checked in polynomial time Confidentiality

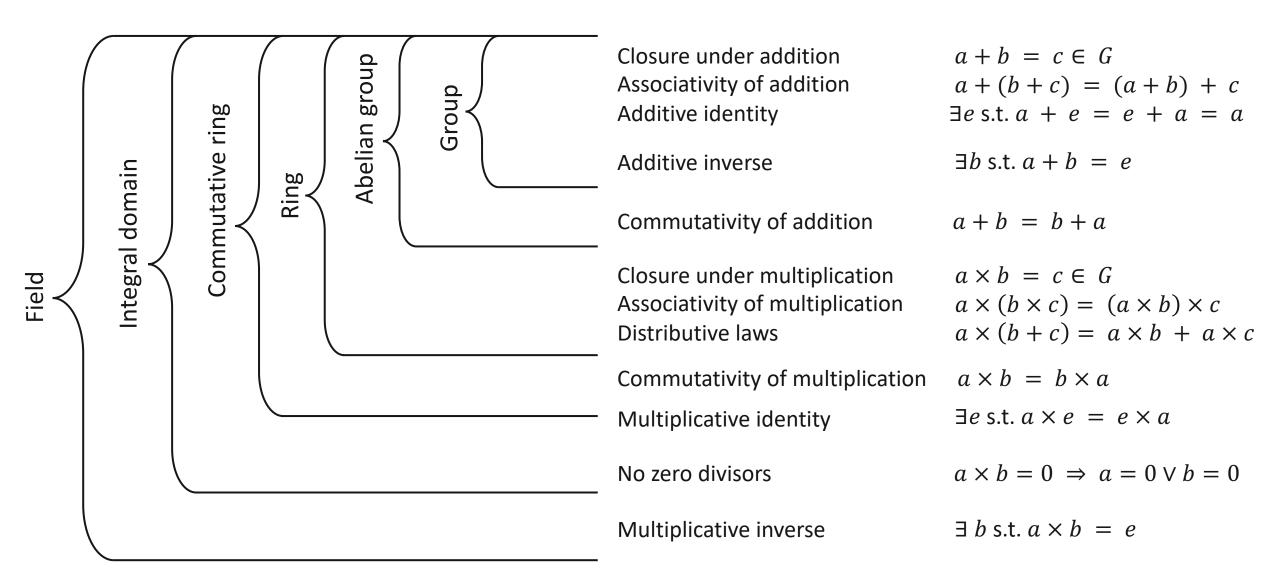
Authentication

Integrity

Non-repudiation

### Algebraic Structures

Public key cryptosystem harnesses certain algebraic properties in finite field



## Public Key Primitives: RSA

Most popular public key method

Provide both public key encryption and digital signatures Operates on multiplicative group  $(\mathbb{Z}/n\mathbb{Z})^*$ 

Based on factorization problem

Given  $n = p \cdot q$ , hard to factorize n in polynomial time

Variable key length (2048 bits or greater)

Variable plaintext block size

Plaintext block size must be smaller than key size

Ciphertext block size is same as key size

## RSA Algorithm

Find (using Miller-Rabin) large primes p and q

Let  $n = p \cdot q$ Do not disclose p and q $\Phi(n) = ???$ 

Choose an *e* that is relatively prime to  $\Phi(n)$ gcd(*e*,  $\Phi(n)$ ) = 1

Public key = (e, n)

Find d as multiplicative inverse of  $e \mod \Phi(n)$  $e \cdot d = 1 \mod \Phi(n)$ 

Private key = (d, n)

## RSA Algorithm

Let RSA public key = (e, n) and RSA private key = (d, n)

Given a plaintext message m < n

Encryption

Encryption:  $c \leftarrow m^e \mod n$ 

Decryption:  $m \leftarrow c^d \mod n$ 

### Signature

Signing:  $s \leftarrow m^d \mod n$ 

Verification:  $m \leftarrow s^e \mod n$ 

What if m > n?

Remark: hash-then-sign paradigm

Hashing:  $t \leftarrow \text{Hash}(m)$  #  $|t| = 160 \text{ bits} \implies t < n$ Signing:  $s \leftarrow t^d \mod n$ 

## RSA Example

- Choose p = 23, q = 11
  - Both primes
  - $n = p \cdot q = 253$
  - $\Phi(n) = (p-1) \cdot (q-1) = 220$
- Choose *e* = **39** 
  - Relatively prime to 220
  - Public key = (**39**, 253)
- Find  $d = e^{-1} \mod 220 = 79$ 
  - $39 \cdot 79 \equiv 1 \mod 220$
  - Private key = <**79**, 253>

Suppose plaintext m = 80

- Encryption  $c = 80^{39} \mod 253 = \_ (m^e \mod n)$
- Decryption  $m = \__{79} \mod 253 = 80 \ (c^d \mod n)$
- Signing  $c = 80^{39} \mod 253 = (m^e \mod n)$
- Verification  $m = \__{79}^{79} \mod 253 = 80 \ (c^d \mod n)$

## RSA Example

- Choose p = 23, q = 11
  - Both primes
  - $n = p \cdot q = 253$
  - $\Phi(n) = (p-1) \cdot (q-1) = 220$
- Choose *e* = **39** 
  - Relatively prime to 220
  - Public key = (**39**, 253)
- Find  $d = e^{-1} \mod 220 = 79$ 
  - $39 \cdot 79 \equiv 1 \mod 220$
  - Private key = <**79**, 253>

Suppose plaintext m = 80

- Encryption  $c = 80^{39} \mod 253 = 37 \pmod{m^e \mod n}$
- Decryption  $m = 37^{79} \mod 253 = 80 \ (c^d \mod n)$

- Signing  $s = 80^{79} \mod 253 = 224 \pmod{m^d \mod n}$
- Verification  $m = 224^{39} \mod 253 = 80 \ (s^{e} \mod n)$

At present, 1024-bit keys are considered secure, but 2048-bit keys are recommended

Tips for making *n* hard to be factorized

p and q lengths should be similar (e.g., ~500 bits each if key is 1024 bits)

both (p-1) and (q-1) should contain a "large" prime factor

gcd(p-1, q-1) should be "small"

d should be larger than  $n^{0.25}$ 

## **RSA Security**

Some attacks on RSA

Mathematical attacks (factor n, compute d from e) -> extremely difficult Brute force Probable-message attacks Timing attacks

How to prevent attacks?

Large key

Random padding (OKCS #1 v1)

Message blinding

## Digital Signature Algorithm (DSA)

Useful only for digital signing (no encryption or key exchange)

Components

SHA-1 to generate a hash value (some other hash functions also allowed now)

**Digital Signature Algorithm** (DSA) to generate the digital signature from this hash value

Designed to be fast for the signer rather than verifier

Based on discrete log hard problem

Given  $y_M$  , hard to find  $x_M$  s.t.  $y_M = g^{x_M} \mod p$ 

### **DSA Public Parameters**

Announce public parameters used for signing

Pick p as a prime with >= 1024 bits

Pick q as a 160-bit prime such that q|(p-1)

Choose  $g \equiv h^{(p-1)/q} \mod p$ ,

where 1 < h < (p - 1) such that q > 1

powers of 64 mod 103 =64 79 9 61 93 81 34 13 8 100 14 72 76 23 30 66 1

Note: q is of order  $q \mod p$ 

$$p = 103$$

$$q = 17$$
 (divides 102)

If 
$$h = 2, g = 2^6 \mod 103 = 64$$

$$q = 17$$
 (divides 102)

If 
$$k = 2$$
,  $\alpha = 26 \mod 103 =$ 

## DSA Key Gen and Signing

#### **Key Generation**

- Alice generates a long-term private key  $x_M$ 
  - Random integer  $0 < x_M < q$   $x_M = 13$
- Alice generates a long-term public key y<sub>M</sub>
  - $y_M = g^{x_M} \mod p$

$$y_M = 64^{13} \mod 103 = 76$$

• Alice randomly picks a private key k such that 0 < k < q, and generates  $k^{-1} \mod q$ 

### Signing phase

- Signing message *M* 
  - Public key  $r = (g^k \mod p) \mod q$

$$k = 12; k^{-1} = 12^{-1} \mod 17 = 10^{-1}$$

$$H(M) = 75$$

$$r = (6412 \mod 103) \mod 17 = 4$$

• Signature  $s = (k^{-1}(H(M) + x_m \cdot r)) \mod q$   $s = (10 \cdot (75 + 13 \cdot 4)) \mod 17 = 12$ 

Send (*M*, *r*, *s*)

## **DSA Verification**

#### Verification

- Public parameters:  $g, p, q, y_M$
- Received from signer: M, r, s

$$p = 103, q = 17, g = 64, y_M = 76$$
  
 $M, 4, 12$   $H(M) = 75$ 

• 
$$w = (s)^{-1} \mod q$$

- $u_1 = [H(M)w] \mod q$
- $u_2 = (r * w) \mod q$

• 
$$v = [(g^{u_1} \cdot y_M^{u_2}) \mod p] \mod q$$

$$w = 12^{-1} \mod 17 = 10$$

$$u_1 = 75 \cdot 10 \mod 17 = 2$$

$$u_2 = 4 \cdot 10 \mod 17 = 6$$

$$v = ((64^2 \cdot 76^6) \mod 103) \mod 17 = 4$$

1. If v = r, then the signature is verified

## DSA Security

Given  $y_M$ , it is difficult to compute  $x_M$ 

 $x_M$  is the discrete log of  $y_M$  to the base g, mod p (i.e.,  $y_M = g^{x_M} \mod p$ )

Similarly, given r, it is difficult to compute k

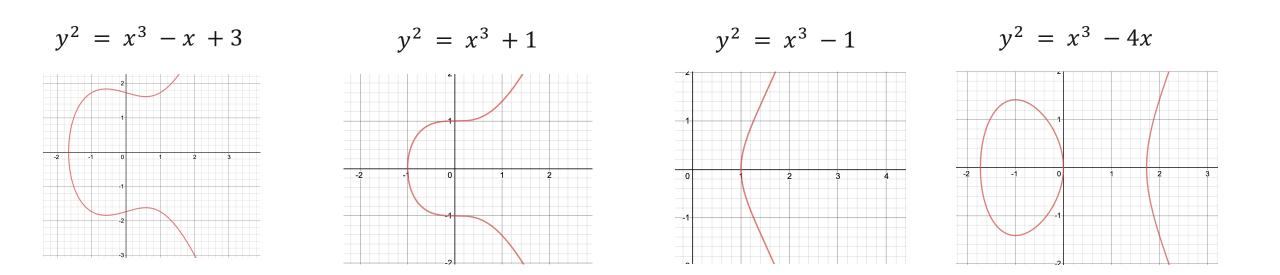
Cannot forge a signature without  $x_M$ 

Signatures are not repeated (used once per message) and cannot be replayed

Slower to verify than RSA, but faster signing than RSA Key lengths of 2048 bits and greater are also allowed Cryptographic Primitives

## **Elliptic Curve Cryptography**

## An elliptic curve (EC) consists of all elements $(x, y) \in \mathbb{F}$ satisfying $y^2 = x^3 + ax + b$

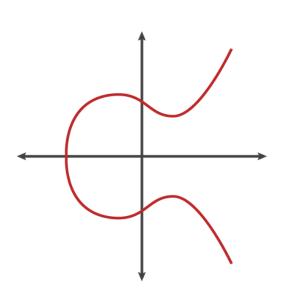


Shorter key size than conventional PKCs (DL-based, RSA)

Lower computation overhead

Due to shorter key

| Sec level<br>(bits) | RSA/DL-based<br>key size (bits) | ECC key<br>size (bits) |
|---------------------|---------------------------------|------------------------|
| 56                  | 512                             | 112                    |
| 80                  | 1024                            | 160                    |
| 112                 | 2048                            | 224                    |
| 128                 | 3072                            | 256                    |
| 192                 | 7680                            | 384                    |
| 256                 | 15360                           | 512                    |



Point addition: Let P and Q be two EC points

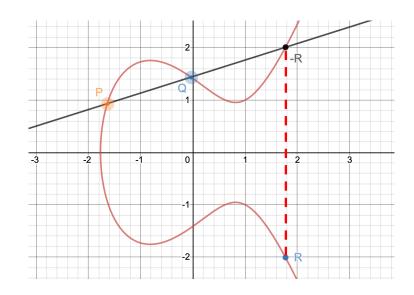
P + Q = R = (x, -y),

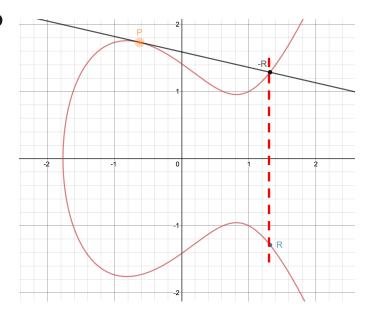
(x, y) = -R := intersection of EC and PQ-line

- <u>Point negation:</u> P + (-P) = O
  - O: identity point at infinity (not on the curve)
- <u>Point doubling</u>: R = P + P = (x', -y'),

(x', y') = -R := intersection of EC and <u>tangent line</u> of P

- Point multiplication: achieved via double-and-add
  - Similar to <u>multiply-and-square</u> trick
  - e.g., Q=7P, 7 = (111)<sub>2</sub>, Q = 0, R=P
    - Q += R & R\*=2; Q+=R & R\*=2; Q+=R & R\*=2





Point addition and point doubling (arithmetic)

$$x_3 = s^2 - x_1 - x_2$$
  

$$y_3 = s(x_1 - x_2) - y_1$$

where

$$s = \begin{cases} \frac{y_2 - y_1}{x_2 - x_1} & \text{if } P \neq Q \text{ (point addition)} \\ \frac{3x_1^2 + a}{2y_1} & \text{if } P = Q \text{ (point doubling)} \end{cases}$$

- Example: Let  $EC = y^2 = x^3 + 2x + 2 \mod 17$ , P = (5,1), Q = (7,6)
- Compute U = 2P, V = P + Q

• 
$$s_u = \frac{3x_1^2 + a}{2y_1} = (3 \cdot \underline{\phantom{x}} + 2) \cdot (2 \cdot \underline{\phantom{x}})^{-1} = \underline{\phantom{x}} \cdot \underline{\phantom{x}}^{-1} = \underline{\phantom{x}} \cdot \underline{\phantom{x}} \equiv \underline{\phantom{x}} \mod 17$$

- $s_{v} = \frac{y_{2} y_{1}}{x_{2} x_{1}} = (\_\_\_] \cdot (\_\_\_]^{-1} = \_\_] \cdot \_\_^{-1} = \_\_ \equiv \_\_ \mod 17$
- $x_u = s_u^2 x_p x_q = \mod 17; \ y_u = s_u(x_p x_q) y_p = \mod 17$
- $x_v = s_v^2 x_p x_q = \mod 17; \ y_v = s_v(x_p x_q) y_p = \mod 17$

Points on an elliptic curve and the infinity point O form cyclic subgroups

e.g., 
$$y^2 = x^3 + 2x + 2 \mod 17$$
, P = (5,1)  
2P = (6,3); 3P = 2P+P = (10,6); ....., 18P = (5,16); 19P =  
O

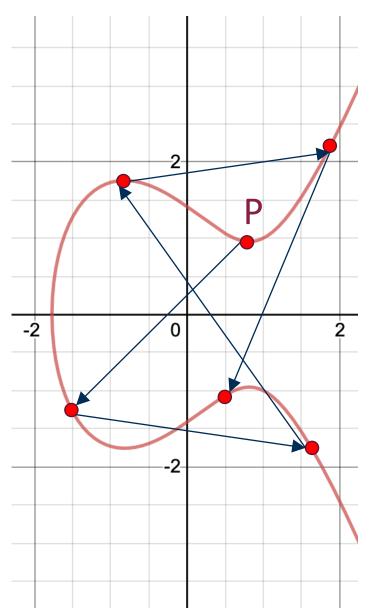
EC has order |E| = 19 as there are 19 points in its cyclic group

#### How many points in an arbitrary EC?

Given an elliptic curve  ${\rm E}$  modulo p, the number of points on  ${\rm E}$  is bounded by

 $p + 1 - 2\sqrt{p} \le |E| \le p + 1 + 2\sqrt{p}$  (Hasse Theorem)

Number of points close to prime p



Rely on <u>EC-discrete logarithmic</u> hard problem

Given  $(G, Y) \in EC$  s.t.  $Y = k \cdot G$  (Y is G added to itself k times), hard to find k

EC Key size smaller than RSA/DH-based crypto

Attacks on EC groups are weaker than factorizing algorithm or discrete log attacks

Best known attacks

Baby-step, giant step

Pollard-Rho

<u>Number of trials</u>:  $O(\sqrt{p})$ 

### **ECDSA Public Parameters**

### Public parameter generation

Pick p as a prime with >= 160 bits

Pick *a*, *b* to form an EC

Pick an ECC generator G with order q $q \times G = 0$ 

How to choose G and q?

$$p = 17$$
  
y<sup>2</sup>= x<sup>3</sup> + 2x<sup>2</sup> + 2x  
(a=2,b=2)

 $\begin{array}{c} \text{multiplication of G mod } p = \\ (5,1) (6,3) (10,6) (3,1) (9,16) (16,13) (0,6) (13,7) (7,6) (7,11) (13,10) (0,11) (16,4) (9,1) (3,16) (10,11) (6,14) (5,16) (0) \\ \hline 19 \text{ points} \end{array}$ 

(p,a,b,G,q) are public parameters

## ECDSA Key Gen and Signing

#### **Key Generation**

Alice generates a long-term private key  $d_A$ Random integer  $0 < d_A < q$  $d_{M} = 5$ Alice generates a long-term public key  $Q_A$  $Q_A = d_M \times G \mod p$  $Q_A = (9, 16)$ Signing phase: To sign message M z = H(M) = 5Select an ephemeral key k from [1, q - 1]k = 3Compute an EC point  $(x_1, y_1) = k \times G$  $(x_1, y_1) = (10, 6)$ Compute  $r = x_1 \mod q$  (choose other k if r = 0) r = 10Compute  $s = k^{-1} (z + r \cdot d_A) \mod q$  (choose other k if s = 0) Signature  $\sigma = (r, s)$  $s = 13 \cdot (5 + 10 \cdot 5) \mod 19 = 12$ Send  $(M, \sigma)$ (M, 10, 12)

### **ECDSA Verification**

#### Verification

<u>Public parameters:</u>  $a, b, G, q Q_A$ <u>Received from signer:</u> M, r, s

$$a = 2, b = 2, p = 17, q = 19, G = (5,1), Q_A = (9,2)$$

$$M, 10, 12 \qquad Z = H(M) = 5$$

$$u_{1} = z \cdot s^{-1} \mod q$$

$$u_{1} = 5 \cdot 12^{-1} \mod 19 = 2$$

$$u_{2} = r \cdot s^{-1} \mod q$$

$$u_{1} = 10 \cdot 12^{-1} \mod 19 = 4$$

Compute EC point  $(x_1, y_1) = u_1 \times G + u_2 \times Q_A$   $(x_1, y_1) = (6,3) + (5,1) = (10,6)$ 

If  $(x_1, y_1) = 0$ , invalid signature

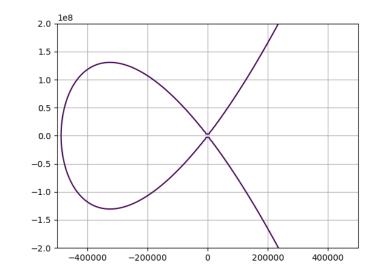
$$x_1 = 10, r = 10$$

If  $r \equiv x_1 \mod n$ , valid signature. Invalid otherwise

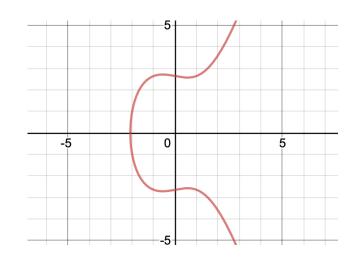
0

## Some Popular ECs

# **Curve25519** (Montgomery curve) $y^2 = x^3 + 486662x^2 + x$ $p = 2^{255} - 19$



#### Secp256k1 (used in bitcoin)



$$y^{2} = x^{3} + 7$$
  

$$p = 2^{256} - 2^{32} - 2^{9} - 2^{8} - 2^{7} - 2^{6} - 2^{4} - 1$$

ECC replaces modular arithmetic operations in conventional PKC by operations defined over the elliptic curve

ECC primitives can be easily constructed by making analogous changes to the corresponding conventional PKC

ECC Encryption from ElGamal Encryption

ECC-DH Key Exchange from Diffie-Hellman Key Exchange

ECC-DSA Signature from DSA Signature