
CS 5594: BLOCKCHAIN
TECHNOLOGIES

THANG HOANG, PhD

Spring 2024

CRYPTOGRAPHIC PRIMITIVES

Why Cryptography?

Bitcoin is a cryptocurrency

Crypto is a mandatory building block in BTC/BC

Remark: Blockchain is based on distributed system and cryptography

2

Outline

Hash Functions and Applications

Asymmetric Cryptography

Public Key Primitives

Digital Signatures

Elliptic Curve Cryptography

3

Hash Functions and Applications

Cryptographic Primitives

4

Hash Function

Also known as

• Message digest

• One-way transformation

• One-way function

• Hash
𝐻 𝑚 ≪ |𝑚|

𝐻 𝑚 = 160, 256, 384, 512 (preferred 256 bits)

Long message of
arbitrary length Hash Short message of

fixed length

5

Ideal Hash Function

Random Oracle

On input x ∊ {0,1}*
If x not in Book

Flip coin d times to determine H(x)
Record (x,H(x)) in Book

Else
return y where (x,y) ∊ Book

EndIf

Impossible to build a Random Oracle in real-world

Idea: Approximate Random Oracle

6

Hash Function Design Principle
(Generally) Merkle-Damgard (MD) iteration
Start from a compression function 𝐻

𝐻: 0,1 !"# → 0,1 #

𝐻

𝑀 = 𝑏 = 512bits

𝑐 = 160 bits
𝑑 = 𝐻 𝑐,𝑀 = 160 bits

𝐻

𝑀!

IV = 𝑑"
𝐻

𝑀#

𝐻

𝑀$%!

𝐻

𝑀$

𝑑! 𝑑# 𝑑$%# 𝑑$%! 𝑑$
𝑑 = 𝐻(𝑀)…

Iterate it

7

Hash-Based Applications
Create small, fixed size message digests from arbitrary message

Authentication
Digital signatures

Hash-based Message Authentication Codes

Pseudo Random Number Generators

Key Derivation Functions
Blockchains

8

Desirable Properties of Hash Functions
Performance

Easy to compute 𝐻(𝑚)
One-Way (OW) property (Pre-Image Resistance)

Given 𝐻(𝑚), it is computationally infeasible to find 𝑚

(Strong) Collision Resistance (CR)

Computationally infeasible to find 𝑚!, 𝑚" s.t. 𝐻(𝑚!) = 𝐻(𝑚")
(Weak) Collision Resistance (Target Collision Resistance – TCR)

Given 𝐻 𝑚 and 𝑚, it is computationally infeasible to find some 𝑚’ s.t.
𝐻(𝑚’) = 𝐻(𝑚)

m H(m)
easy

hard✕

9

CR vs. TCR

CR implies TCR

TCR does not imply CR

10

OW vs. CR
OW does not imply CR

CR does not imply OW

11

Length of Hash Output
Why do we need 160 or 256 bits in the output of a hash function?

If it is too long?
Unnecessary overhead

If it is too short?
Birthday paradox attack

Loss of strong collision property

12

Birthday Paradox
A classroom of n students

Probability of at least two students having the same birthday (e.g., Feb 3)

n=1 1 – #$%
#$%

n=2 1 – #$&
#$%

n=3 1 – #$&
#$%

× #$#
#$%

General n students:

1 –
364
365

×
363
365

…
365 − 𝑛 − 1

365
= 1 –

365!
365 − 𝑛! ⋅ (365')

13

Birthday Paradox

Pr no collision = 1 −
1
𝑛
× 1 −

2
𝑛
×⋯× 1 −

𝑘 − 1
𝑛

≈ 𝑒(
)!
"'

When x is small 1 − 𝑥 ≈ 𝑒(* ⇒ 1 − !
'
≈ 𝑒(

"
#

Pr no collision = 𝑒(!/' × 𝑒("/'×⋯×𝑒(
)(!
'

= 𝑒(((!-"-⋯-)(!)/'

= 𝑒()()(!)/"'

14

Birthday Paradox

Pr no collision = 𝑒()()(!)/"'

Pr at least one collision = 1 − 𝑒()()(!)/"'

⇒ 𝑘 = 2𝑛× ln(
1

1 − 𝑝
)

In general, if there are k possibilities then (on average) √𝑘 are required to find a
collision

15

Birthday Paradox
Implication for hash function 𝐻 of length 𝑚

With a probability of 0.5
If we hash 2$/& random inputs
Two message will have the same hash output
Birthday attack

In Conclusion
Choose at least 𝑚 ≥ 160, preferably 𝑚 = 256

16

Imperfect Hash Functions
Applications should rely only on “specific security properties” of hash
functions

Try to make these properties as “standard” and as weak as
possible

Increase the odds of long-term security
When weaknesses are found in hash function, application more
likely to survive

Example: MD5 is badly broken, but HMAC-MD5 is barely scratched

17

Security Requirements
Deterministic hashing

Attacker chooses 𝑀, 𝑑 = 𝐻(𝑀)

Hashing with a random salt
Attacker chooses 𝑀, then good guy
chooses public salt 𝑠, 𝑑 = 𝐻(𝑠,𝑀)

Hashing random messages
Given 𝑀, 𝑑 = 𝐻 𝑀' , where 𝑀′ = 𝑀 || 𝑟

Hashing with a secret key 𝒌
Attacker chooses 𝑀, 𝑑 = 𝐻(𝑘,𝑀)

Stronger

Weaker
18

Hashing Security Properties
Deterministic hashing

Collision Resistance (CR)
Attacker cannot find 𝑀,𝑀′ such that 𝐻(𝑀) = 𝐻(𝑀′)

Also many other properties
Hard to find fixed-points, near-collisions, 𝑀 s.t. 𝐻(𝑀) has
low Hamming weight

19

Hashing Security Properties
Hashing with public salt

Target-Collision-Resistance (TCR)
Attacker chooses 𝑀, then given random salt 𝑠, cannot find
𝑀’ s.t. 𝐻(𝑠,𝑀) = 𝐻(𝑠,𝑀’)

Enhanced TCR (eTCR)
Attacker chooses 𝑀, then given random salt s, cannot find
𝑀’ and 𝑠’ s.t. 𝐻(𝑠,𝑀) = 𝐻(𝑠′,𝑀′)

20

Hashing Security Properties
Hashing Random Message

Second Preimage Resistance
Given random 𝑀, attacker cannot find 𝑀’ such that
𝐻(𝑀) = 𝐻(𝑀’)

One-wayness
Given 𝑑 = 𝐻(𝑀) for random M, attacker cannot find
some 𝑀’ such that 𝐻(𝑀’) = 𝑑

Extraction
For random 𝑠, high-entropy 𝑀, the digest 𝑑 = 𝐻(𝑠,𝑀)
is close to being uniform

21

Hashing Security Properties
Hashing with a Secret Key

Pseudo-Random Functions

The mapping 𝑀 → 𝐻(𝑘,𝑀) for secret key 𝑘 looks random to an
attacker

Universal hashing
∀𝑀 ≠ 𝑀', Pr([𝐻(𝑘,𝑀) = 𝐻 (𝑘,𝑀’)] < 𝜖

22

Is Encryption a Good Hash Function?

Block-based Encryption as Hash
Encryption block size may be too short (DES=64)
Birthday attack
Extension attacks

𝑀2
E

constant

E𝑀3
E𝑀4

E𝑀5

Hash

…

23

(In)Security of MD5
A few recently discovered methods can find collisions in a few hours

A few collisions were published in 2004

Many collisions found later for 1024-bit messages

More discoveries afterwards

In 2005, two X.509 certificates with different public keys and the same
MD5 hash were constructed
§ Based on differential analysis

§ 8 hours on a 1.6GHz computer

§ Much faster than birthday attack

24

Modern Hash Functions
MD5

§ Previous versions (MD2, MD4) have serious weaknesses

§ Broken; collisions published in August 2004

§ Too weak to be used for critical applications

SHA-1

§ Broken, both in theory and practice (with real-attacks)

§ Collisions found in 2"# hash operations, much less than brute-force of 2$%
operations (CRYPTO ’05)

§ http://thehackernews.com/2017/02/sha1-collision-attack.html

Recommended
• SHA-256, SHA-384, SHA-512, …
• BLAKE-256/512 (good for embedded devices)

25

http://thehackernews.com/2017/02/sha1-collision-attack.html

Hash-based Primitives

Authentication
Digital Signatures
Hash-based Message Authentication Code (HMAC)
Authenticated Data Structures

Hash Chain
Merkle Tree

Proof of Work

26

Digital Signatures
Hash-then-sign paradigm

First shorten arbitrary-long message, 𝑑 = 𝐻(𝑚)
Then sign the digest, 𝑠 = Sign(𝑑)

Rely on collision resistance property
If 𝐻(𝑀) = 𝐻(𝑀’) then 𝑠 is a signature for both 𝑀 and 𝑀’

Attacks on MD5, SHA-1 threaten current signatures
MD5 attacks can be used to get bad CA certificate [Stevens et al. 2009]

Signature generation

Message 𝑚
Hash 𝐻(𝑚) Sign

Bob’s private key sk

Signature 𝑠

Signature verification

Message 𝑚
Hash H(m)

Verify Valid/invalid

Signature 𝑠

Bob’s public key pk

27

Collision Resistance is Hard

Attacker works off-line (find M,M’)
Use state-of-the-art cryptanalysis, as much as computation
power as it can garter, without being detected !!

Helped by birthday attack (e.g., 2^80 vs. 2^160)

Well-worth the effort

One collision -> forgery for any signer

28

Signatures without CRHF
Use randomized hashing

To sign 𝑀, choose fresh random salt s

Set 𝑑 = 𝐻(𝑠,𝑀), then 𝑠 = sign(𝑠, 𝑑)

Attack scenario (collision game)
Attacker chooses M, M’
Signer chooses random salt 𝑠
Attacker mut finds 𝑀’ s.t. 𝐻(𝑠,𝑀) = 𝐻(𝑠,𝑀’)

Attack is inherently online
Only rely on target collision resistance (TCR)

Same s (since s is
explicitly signed)✕

29

TCR hashing for signatures
Not every randomization works

𝐻(𝑀||𝑠) may be subject to collision attacks when 𝐻 is Merkle-Damgård
Yet this is what Probabilistic Signature Scheme (PSS) does (and it is provable in
the ROM model)

Many constructions “in principle”
From any one-way function

Some engineering challenges
Most use long/variable-size randomness → don’t preserve Merkle-Damgård

Also, signing salt means changing the underlying signature schemes!

30

Hashed Message Authentication Code (HMAC)
Simple key-prepend/append have problems
when used with MD hash

Tag ← 𝐻(𝑘𝑒𝑦 || 𝑀) subject to length
extension attacks

HMAC: tag ← 𝐻(𝑘𝑒𝑦 || 𝐻(𝑘𝑒𝑦 || 𝑀))
About as fast as key-prepend for a MD hash

Rely only on PRF quality of hash
tag ← 𝐻(𝑘𝑒𝑦||𝑀) looks random when 𝑘𝑒𝑦
is secret

Key K

Pad with 0s to
512 bits in length

Concatenate

Compute
Message Digest

Message M

⨁

0x5c5c…5c ⨁

0x3636…36

Concatenate

Compute
Message Digest

HMAC(key, M)
31

Hash Chain
Used for many network security applications

S/Key
Authenticate data streams
Key derivation in crypto schemes
Forward-security
Commitments

𝐾6 = 𝐻(𝐾672), 𝐻: hash function

𝐾4 𝐹𝐾3 𝐹𝐾8 𝐹𝐾2 𝐹𝐾9 𝐹 𝐾: = 	𝑅𝐹

Commitment

32

One-way Hash Chain: Properties
Given 𝐾!:

Anybody can compute 𝐾!, where 𝑗 < 𝑖
It is computationally infeasible to compute 𝐾", where 𝑙 > 𝑖
Any 𝐾" disclosed later can be authenticated by checking if 𝐻"#$ (𝐾$) =
𝐾"
Disclosing of 𝐾$%& or a later value authenticates the owner of the hash
chain

𝐾4 𝐹𝐾3 𝐹𝐾8 𝐹𝐾2 𝐹𝐾9 𝐹 𝐾: = 	𝑅𝐹

33

Using “Disposable” Passwords
Idea: generate a long list of passwords, use each only one time

Attacker gains little/no advantage by eavesdropping on password protocol,
or cracking one password

Disadvantages
Storage overhead
Remember a lot of passwords

Alternative: the S/Key protocol

Use one-way (hash) function

34

S/Key Password Generation
Alice selects a password 𝑥%
Alice specifies 𝑛, the number of passwords to generate

Alice’s generates a sequence of passwords
• 𝑥* = 𝐻(𝑥)
• 𝑥+ = 𝐻(𝑥*)
• …
• …
• 𝑥, = 𝐻 𝑥,-*

Alice sends (securely) last value in the sequence: 𝑥𝑛
Key feature: no one knowing 𝑥𝑖 can easily find 𝑥.-/ such that 𝐻 𝑥.-/ = 𝑥. , 𝑗 ∈ [𝑖]

Only Alice possesses that information

𝐻

𝑥!

𝐻 𝐻…

𝑥" 𝑥# 𝑥$…

35

S/Key Password: Limitation
Limited number of passwords (by 𝑛)

Need to periodically regenerate a new chain of passwords

Does not authenticate server!

Do not substitute bad seed password

Just a tool to enhance password-based systems

36

Chained Hash
More general construction than one-way hash chains

Useful for authenticating a sequence of data values 𝐷8 , 𝐷! , … , 𝐷'

𝐻∗ authenticates the entire chain

𝐷#

𝐷#)*

𝐻#)*

𝐻(𝐷#)

𝐷#)&

𝐻#)&

𝐻(𝐷#)*	||𝐻#)*)

𝐷+

𝐻+
…

𝐻∗

37

Merkle Hash Tree
A binary tree over data values

For authentication purpose

Verifier stores the root as the commitment of the Merkle tree

Example
To authenticate 𝑘+, send (𝑘+, 𝑚1, 𝑚%*, 𝑚23)
Check 𝑚%3 =?ℎ(ℎ(𝑚%*||ℎ(𝑓(𝑘+)||𝑚1)||𝑚23)

𝑘! 𝑘" 𝑘# 𝑘$ 𝑘% 𝑘& 𝑘' 𝑘(

𝑚! 𝑚" 𝑚# 𝑚$ 𝑚% 𝑚& 𝑚' 𝑚(

𝑚!" 𝑚#$ 𝑚%& 𝑚'(

𝑚!$ 𝑚%(

𝑚!(

𝑚! = 𝑓(𝑘!)

𝑚!" = ℎ(𝑚!, 𝑚")

𝑚!% = ℎ(𝑚!", 𝑚#%)

𝑚!& = ℎ(𝑚!%, 𝑚'&)

38

Merkle Hash Tree
Hashing at the leaf level is
mandatory to prevent unnecessary
disclosure of data values

Authentication of the root is
necessary to use the tree

Typically done through a digital
signature or pre-distribution

Limitation
All leaf values must be known
ahead of time

𝑘! 𝑘" 𝑘# 𝑘$ 𝑘% 𝑘& 𝑘' 𝑘(

𝑚! 𝑚" 𝑚# 𝑚$ 𝑚% 𝑚& 𝑚' 𝑚(

𝑚!" 𝑚#$ 𝑚%& 𝑚'(

𝑚!$ 𝑚%(

𝑚!(

𝑚! = 𝑓(𝑘!)

𝑚!" = ℎ(𝑚!, 𝑚")

𝑚!$ = ℎ(𝑚!", 𝑚#$)

𝑚!(= ℎ(𝑚!$, 𝑚%()

39

Merkle Hash Tree
Update an element?
Insert a new element?

Delete an element?

𝑘! 𝑘" 𝑘# 𝑘$ 𝑘% 𝑘& 𝑘' 𝑘(

𝑚! 𝑚" 𝑚# 𝑚$ 𝑚% 𝑚& 𝑚' 𝑚(

𝑚!" 𝑚#$ 𝑚%& 𝑚'(

𝑚!$ 𝑚%(

𝑚!(

𝑚! = 𝑓(𝑘!)

𝑚!" = ℎ(𝑚!, 𝑚")

𝑚!$ = ℎ(𝑚!", 𝑚#$)

𝑚!(= ℎ(𝑚!$, 𝑚%()

40

Merkle Hash Tree in Blockchain

trans: H()

prev: H()

trans: H()

prev: H()

trans: H()

prev: H()

H() H()

H() H() H() H()

transaction transaction transaction transaction

Hash chain of blocks

Hash tree (Merkle tree) of
transactions in each block

41

Asymmetric Cryptography

Cryptographic Primitives

42

Public Key (Asymmetric) Cryptography

Cryptographic operations use different keys

Known as asymmetric key cryptography, public key cryptography
Key negotiation, digital signatures

plaintext
Encryption Decryption

plaintextciphertext

public key private key

43

Public Key Cryptography: Properties
Rely on some known mathematical hard problems

Discrete logarithmic
Elliptic curve discrete logarithmic
Large integer factorization

P vs. NP
A problem is in P if it can be solved in polynomial time
A problem is in NP if the validity of a proposed solution can be
checked in polynomial time

44

Public Key Cryptography: Properties

Confidentiality

Authentication

Integrity

Non-repudiation

45

Algebraic Structures
Public key cryptosystem harnesses certain algebraic properties in finite field

Closure under addition
Associativity of addition
Additive identity

Additive inverse

Closure under multiplication
Associativity of multiplication
Distributive laws

Multiplicative identity

No zero divisors

Multiplicative inverse

Gr
ou

p

Ab
el

ia
n

gr
ou

p

Ri
ng

Co
m

m
ut

at
iv

e
rin

g

In
te

gr
al

 d
om

ai
n

Fi
el

d

Commutativity of addition

Commutativity of multiplication

𝑎 + 𝑏	 = 	𝑐 ∈ 	𝐺
 𝑎 + (𝑏 + 𝑐) 	= 	 (𝑎 + 𝑏) 	+ 	𝑐
∃𝑒	s.t. 𝑎	 + 	𝑒	 = 	𝑒	 + 	𝑎	 = 	𝑎

∃𝑏	s.t. 𝑎 + 𝑏	 = 	𝑒

𝑎 + 𝑏	 = 	𝑏 + 𝑎

𝑎	×	𝑏	 = 	𝑐 ∈ 	𝐺
 𝑎	× 𝑏	×	𝑐 = 𝑎	×	𝑏 	×	𝑐
 𝑎	× 𝑏 + 𝑐 = 	𝑎	×	𝑏	 + 	𝑎	×	𝑐

𝑎	×	𝑏	 = 	𝑏	×	𝑎
∃𝑒	s.t. 𝑎	×	𝑒	 = 	𝑒	×	𝑎

𝑎	×	𝑏 = 0	 ⇒ 	𝑎 = 0 ∨ 𝑏 = 0

∃	𝑏	s.t. 𝑎	×	𝑏	 = 	𝑒

46

Public Key Primitives: RSA
Most popular public key method

Provide both public key encryption and digital signatures

Operates on multiplicative group ℤ/𝑛ℤ ∗

Based on factorization problem
Given 𝑛 = 𝑝 ⋅ 𝑞, hard to factorize 𝑛 in polynomial time

Variable key length (2048 bits or greater)

Variable plaintext block size
Plaintext block size must be smaller than key size
Ciphertext block size is same as key size

47

RSA Algorithm
Find (using Miller-Rabin) large primes 𝑝 and 𝑞
Let 𝑛 = 𝑝 ⋅ 𝑞

Do not disclose 𝑝 and 𝑞
Φ 𝑛 = ???

Choose an 𝑒 that is relatively prime to Φ(𝑛)
gcd(𝑒,Φ(𝑛)) = 1

Public key = (𝑒, 𝑛)
Find 𝑑 as multiplicative inverse of 𝑒 mod Φ(𝑛)

𝑒 ⋅ 𝑑 = 1 mod Φ(𝑛)
Private key = (𝑑, 𝑛)

48

RSA Algorithm
Let RSA public key = (𝑒, 𝑛) and RSA private key = (𝑑, 𝑛)
Given a plaintext message 𝑚 < 𝑛
Encryption

Encryption: 𝑐 ← 𝑚: mod 𝑛
Decryption: 𝑚 ← 𝑐; mod 𝑛

Signature
Signing: 𝑠 ← 𝑚; mod 𝑛
Verification: 𝑚 ← 𝑠: mod 𝑛

What if m > n?
Remark: hash-then-sign paradigm
Hashing: 𝑡 ← Hash(𝑚) # |t| = 160 bits ⟹𝑡 < 𝑛
Signing: 𝑠 ← 𝑡; mod 𝑛

49

RSA Example
§ Choose 𝑝 = 23, 𝑞 = 11
• Both primes
• 𝑛 = 𝑝 ⋅ 𝑞 = 253
• Φ 𝑛 = 𝑝 − 1 ⋅ (𝑞 − 1) =
220

§ Choose 𝑒 = 𝟑𝟗
• Relatively prime to 220
• Public key = (39, 253)

§ Find 𝑑 = 𝑒#$ mod 220 = 𝟕𝟗
• 39 ⋅ 79 ≡ 1 mod 220
• Private key = <79, 253>

Suppose plaintext 𝑚	 = 	𝟖𝟎

§ Encryption
𝑐	 = 	80%&	mod	253	 =	____ (𝑚'	mod	𝑛)

§ Decryption
𝑚	 = ____79 mod	253	 = 	𝟖𝟎 (𝑐(mod	𝑛)

§ Signing
𝑐 = 80%&	mod	253	 = ____ (𝑚'	mod	𝑛)

§ Verification
𝑚 = ____79	mod	253	 = 	𝟖𝟎 (𝑐(mod	𝑛)

50

RSA Example
§ Choose 𝑝 = 23, 𝑞 = 11
• Both primes
• 𝑛 = 𝑝 ⋅ 𝑞 = 253
• Φ 𝑛 = 𝑝 − 1 ⋅ (𝑞 − 1) =
220

§ Choose 𝑒 = 𝟑𝟗
• Relatively prime to 220
• Public key = (39, 253)

§ Find 𝑑 = 𝑒#$ mod 220 = 𝟕𝟗
• 39 ⋅ 79 ≡ 1 mod 220
• Private key = <79, 253>

Suppose plaintext 𝑚	 = 	𝟖𝟎

§ Encryption
𝑐	 = 	80%&	mod	253	 =	37 (𝑚'	mod	𝑛)

§ Decryption
𝑚	 = 3779 mod	253	 = 	𝟖𝟎 (𝑐(mod	𝑛)

§ Signing
𝑠 = 80)&	mod	253	 = 224 (𝑚(mod	𝑛)

§ Verification
𝑚 = 22439	mod	253	 = 	𝟖𝟎 (𝑠'	mod	𝑛)

51

RSA Security

At present, 1024-bit keys are considered secure, but 2048-bit keys are
recommended

Tips for making 𝑛 hard to be factorized
𝑝 and 𝑞 lengths should be similar (e.g., ~500 bits each if key is
1024 bits)
both (𝑝 − 1) and (𝑞 − 1) should contain a “large” prime factor
gcd(𝑝 − 1, 𝑞 − 1) should be “small”
𝑑 should be larger than 𝑛8."%

52

RSA Security

Some attacks on RSA

Mathematical attacks (factor n, compute d from e) -> extremely difficult

Brute force

Probable-message attacks

Timing attacks

How to prevent attacks?

Large key

Random padding (OKCS #1 v1)

Message blinding
53

Digital Signature Algorithm (DSA)
Useful only for digital signing (no encryption or key exchange)

Components
SHA-1 to generate a hash value (some other hash functions also allowed
now)
Digital Signature Algorithm (DSA) to generate the digital signature from
this hash value

Designed to be fast for the signer rather than verifier

Based on discrete log hard problem
Given 𝑦= , hard to find 𝑥= s.t. 𝑦= = 𝑔*& mod 𝑝

54

DSA Public Parameters
Announce public parameters used for signing

Pick 𝑝 as a prime with >= 1024 bits

Pick 𝑞 as a 160-bit prime such that 𝑞|(𝑝-1)

Choose 𝑔 ≡ ℎ(>(!)/? mod 𝑝,

where 1 < h < (p – 1) such that g > 1

Note: 𝑔 is of order 𝑞 mod 𝑝

𝑝	 = 	103

q = 17 (divides 102)

If h = 2, g = 26 mod 103 = 64

powers of 64 mod 103 =
64 79 9 61 93 81 34 13 8 100 14 72 76 23 30 66 1

17 values

55

DSA Key Gen and Signing
Key Generation

§ Alice generates a long-term private key 𝑥F
• Random integer 0 < 𝑥F < 𝑞

§ Alice generates a long-term public key yM
• 𝑦F = 𝑔G) mod 𝑝

§ Alice randomly picks a private key k such that 0 < k < q, and generates 𝑘-*mod 𝑞

Signing phase

§ Signing message 𝑀

• Public key 𝑟 = (𝑔Hmod 𝑝) mod 𝑞

• Signature 𝑠 = 𝑘-* 𝐻 𝑀 + 𝑥I ⋅ 𝑟 mod 𝑞

§ Send 𝑀, 𝑟, 𝑠

𝑥F = 13

𝑦F = 6413 mod 103 = 76

𝑘	 = 	12;	𝑘;2 = 12;2	mod	17	 = 	10

𝐻(𝑀) 	= 	75

𝑟	 = 	 (6412	mod	103)	mod	17	 = 	4	

𝑠	 = 10 ⋅ 75	 + 	13 ⋅ 4 	mod	17	 = 	12

(𝑀, 4, 12)

56

DSA Verification
Verification
§ Public parameters: 𝑔, 𝑝, 𝑞, 𝑦F
§ Received from signer: 𝑀, 𝑟, 𝑠

§ 𝑤 = 𝑠 -* mod 𝑞

§ 𝑢* = [𝐻(𝑀)𝑤] mod 𝑞

§ 𝑢+ = (𝑟 ∗ 𝑤) mod 𝑞

§ 𝑣 = [𝑔J< ⋅ 𝑦F
J= mod 𝑝] mod 𝑞

1. If 𝑣 = 𝑟, then the signature is verified

𝑀, 4, 12

𝑤	 = 	12;2	mod	17	 = 	10	

𝑢2 	= 	75 ⋅ 10	mod	17	 = 	2

𝑢8 	= 	4 ⋅ 10	mod	17	 = 	6

𝑣	 = 648 ⋅ 	76> mod	103 	mod	17	 = 	4

𝑝	 = 	103, 𝑞	 = 	17, 𝑔	 = 	64, 𝑦) 	= 	76

𝐻(𝑀) 	= 	75

57

DSA Security
Given 𝑦=, it is difficult to compute 𝑥=

𝑥= is the discrete log of 𝑦= to the base 𝑔, mod 𝑝 (i.e., 𝑦= = 𝑔*& mod 𝑝)

Similarly, given 𝑟, it is difficult to compute 𝑘

Cannot forge a signature without 𝑥=

Signatures are not repeated (used once per message) and cannot be replayed

Slower to verify than RSA, but faster signing than RSA
Key lengths of 2048 bits and greater are also allowed

58

Elliptic Curve Cryptography

Cryptographic Primitives

59

Elliptic Curve Cryptography

An elliptic curve (EC) consists of all elements 𝑥, 𝑦 ∈ 𝔽 satisfying
𝑦" = 𝑥# + 𝑎𝑥 + 𝑏

𝑦# 	= 	 𝑥% 	− 𝑥	 + 3 𝑦# 	= 	 𝑥% 	+ 1 𝑦# 	= 	 𝑥% 	− 1 𝑦# 	= 	 𝑥% 	− 4𝑥

60

Why Elliptic Curve Cryptography?
Shorter key size than conventional PKCs (DL-based, RSA)

Lower computation overhead
Due to shorter key

Sec level
(bits)

RSA/DL-based
key size (bits)

ECC key
size (bits)

56 512 112
80 1024 160

112 2048 224
128 3072 256
192 7680 384
256 15360 512

61

Elliptic Curve Cryptography
§ Point addition: Let P and Q be two EC points

𝑃 + 𝑄 = 𝑅 = (𝑥,−𝑦),
𝑥, 𝑦 = −𝑅 := intersection of EC and PQ-line

§ Point negation: 𝑃 + −𝑃 = 𝑂
• O: identity point at infinity (not on the curve)

§ Point doubling: 𝑅 = 𝑃 + 𝑃 = 𝑥P, −𝑦P ,

𝑥′, 𝑦′ = −𝑅 := intersection of EC and tangent line of P

§ Point multiplication: achieved via double-and-add
• Similar to multiply-and-square trick
• e.g., Q=7P, 7 = (111)2, Q = 0, R=P

o Q += R & R*=2; Q+=R & R*=2; Q+=R & R*=2

62

Elliptic Curve Cryptography
Point addition and point doubling (arithmetic)

𝑥% = 𝑠# − 𝑥" − 𝑥#
𝑦% = 𝑠(𝑥" − 𝑥#) − 𝑦"

where

𝑠 =

𝑦# − 𝑦"
𝑥# − 𝑥"

if 𝑃 ≠ 𝑄 (point addition)

3𝑥"# + 𝑎
2𝑦"

if 𝑃 = 𝑄 (point doubling)

§ Example: Let EC = 𝑦8 = 𝑥3 + 2𝑥 + 2 mod 17, P = (5,1), Q = (7,6)

§ Compute U = 2𝑃, 𝑉 = 𝑃 + 𝑄

• 𝑠* =
$+&',-
#.&

= 3 ⋅ ___ + 2 ⋅ 2 ⋅ ___ /" = ___ ⋅ ___/" = ___ ⋅ ___ ≡ ___ mod 17

• 𝑠0 =
.'/.&
+'/+&

= ___ − ___ ⋅ ___ − ___ /" = ___ ⋅ ___/" = ___ ≡ ___mod 17

• 𝑥* = 𝑠*# − 𝑥1 − 𝑥2 = ___mod 17; 𝑦* = 𝑠* 𝑥1 − 𝑥2 − 𝑦1 = ___mod 17

• 𝑥0 = 𝑠0# − 𝑥1 − 𝑥2 = ___mod 17; 𝑦0 = 𝑠0(𝑥1 − 𝑥2) − 𝑦1 = ___mod 17

63

Elliptic Curve Cryptography
Points on an elliptic curve and the infinity point O form
cyclic subgroups

e.g., 𝑦+= 𝑥1 + 2𝑥 + 2 mod 17, P = (5,1)
2P = (6,3); 3P = 2P+P = (10,6); ……., 18P = (5,16); 19P =
O
EC has order |E| = 19 as there are 19 points in its cyclic
group

How many points in an arbitrary EC?
Given an elliptic curve E modulo 𝑝, the number of points
on E is bounded by
𝑝 + 1 − 2 𝑝 ≤ 𝐸 ≤ 𝑝 + 1 + 2 𝑝 (Hasse Theorem)

Number of points close to prime 𝑝

P

64

Elliptic Curve Cryptography
Rely on EC-discrete logarithmic hard problem

Given 𝐺, 𝑌 ∈ EC s.t. 𝑌 = 𝑘 ⋅ 𝐺 (𝑌 is 𝐺 added to itself 𝑘 times), hard
to find 𝑘

EC Key size smaller than RSA/DH-based crypto
Attacks on EC groups are weaker than factorizing algorithm or discrete log
attacks

Best known attacks

Baby-step, giant step

Pollard-Rho

Number of trials: O(𝑝)
65

ECDSA Public Parameters
Public parameter generation

Pick 𝑝 as a prime with >= 160 bits

Pick 𝑎, 𝑏 to form an EC

Pick an ECC generator 𝐺 with order 𝑞
𝑞×𝐺 = O

How to choose G and q?

(p,a,b,G,q) are public parameters

𝑝	 = 17

𝑦+= 𝑥1 + 2𝑥+ + 2𝑥
(a=2,b=2)

multiplication of G mod p =
(5,1) (6,3) (10,6) (3,1) (9,16) (16,13) (0,6) (13,7) (7,6) (7,11) (13,10) (0,11) (16,4) (9,1) (3,16) (10,11) (6,14) (5,16) (O)

19 points

G = (5,1), q=19

66

ECDSA Key Gen and Signing
Key Generation

Alice generates a long-term private key 𝑑a
Random integer 0 < 𝑑a < 𝑞

Alice generates a long-term public key QA
𝑄a = 𝑑F×𝐺 mod 𝑝

Signing phase: To sign message M
Select an ephemeral key 𝑘 from 1, 𝑞 − 1
Compute an EC point 𝑥*, 𝑦* = 𝑘 × 𝐺
Compute 𝑟 = 𝑥* mod 𝑞 (choose other 𝑘 if 𝑟 = 0)

Compute 𝑠 = 𝑘-* (𝑧 + 𝑟 ⋅ 𝑑a) mod 𝑞 (choose other 𝑘 if 𝑠 = 0)

Signature 𝜎 = (𝑟, 𝑠)
Send 𝑀,𝜎

𝑑F = 5

𝑄a = (9,16)

𝑘	 = 3

𝑥2, 𝑦2 = (10,6)

𝑟	 = 10	

𝑠	 = 13 ⋅ 5 + 10 ⋅ 5 	mod	19	 = 12

(𝑀, 10, 12)

𝑧 = 𝐻(𝑀) = 5

67

ECDSA Verification
Verification

Public parameters: 𝑎, 𝑏, 𝐺, 𝑞 𝑄Y
Received from signer: 𝑀, 𝑟, 𝑠

𝑢! = 𝑧 ⋅ 𝑠(! mod 𝑞

𝑢" = 𝑟 ⋅ 𝑠(! mod 𝑞

Compute EC point 𝑥!, 𝑦! = 𝑢!×𝐺 + 𝑢"×𝑄Y

If 𝑥!, 𝑦! = O, invalid signature

If 𝑟 ≡ 𝑥! mod 𝑛, valid signature. Invalid otherwise

𝑀, 10, 12

𝑢2 = 5 ⋅ 12;2mod	19 = 2	

𝑢2 	= 10 ⋅ 12;2	mod	19	 = 4

𝑥2, 𝑦2 = 6,3 + 5,1 = 10,6

𝑥2 = 10, 𝑟 = 10

𝑎 = 2, 𝑏 = 2, 𝑝	 = 17, 𝑞 = 19, 𝐺	 = 5,1 , 𝑄* 	= (9,16)	

𝑧 = 𝐻(𝑀) 	= 5

68

Some Popular ECs

Curve25519 (Montgomery curve)
𝑦+ = 𝑥1 + 486662𝑥+ + 𝑥

𝑝 = 2+bb − 19

Secp256k1 (used in bitcoin)
𝑦+ = 𝑥1 + 7

𝑝 = 2+b" – 21+ − 2# – 2$ – 23 – 2" – 22 − 1

69

Other ECC-based Primitives

ECC replaces modular arithmetic operations in conventional PKC by operations
defined over the elliptic curve

ECC primitives can be easily constructed by making analogous changes to the
corresponding conventional PKC

ECC Encryption from ElGamal Encryption
ECC-DH Key Exchange from Diffie-Hellman Key Exchange
ECC-DSA Signature from DSA Signature

70

